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A RELIABILITY TEST METHOD FOR "ONE-SHOT" ITEMS

H. J. Langlie
Aeronutronic Division, Ford Motor Company

1. INTRODUCTION. As a result of many reliability problems which have
plagued procuring agencies in the missile and space programs, increased
emphasis has been placed on the development of improved reliability demon-
stration test methods. In this connection, the Army has advocated increased
use of the "test-to-failure" concept to establish the existence of satisfactory
margins of reliability with respect to critical factors. This philosophy has
the advantage in that statistical statements can be made regarding reliability
on the basis of relatively small samples. This paper will discuss the appli-
cation of this general concept to a particular class of hardware.

In essence, the "test-to-failure" concept involves submitting a test
specimen to an increasing environment or load stress until failure is detected.
By observing the statistical behavior of the stresses at which failure occurs,
the lower limit of stress below which the probability of failure is very small
can be selected by using the mean and standard deviation of these data.
Robert Lusser (reference 1) advocated the safety margin concept in inter-
preting these data. As is shown in Figure 1, the larger the value of k

* (which is the distance from the mean strength to the upper limit of the oper-

ating applied stress divided by the standard deviation of the data), the
greater the reliability of the specimen with respect to the stress involved.

In establishing the reliability objectives for the Shillelagh Program, the
Army Missile Command required that safety margins be demonstrated in
the test laboratory for Shillelagh components with respect to critical environ-
mental stress factors. Many of these components are of a "go-no-gon type
such as thermal batteries, electrical relays, and other short-lived equip-
ment items. In most cases, little information was available prior to test
regarding the nature of the standard deviation of the distribution of strenghts
for these parts. Furthermore, it was desired to perform a laboratory test
involving a minimum number of samples. A review of attribute sensitivity
testing techniques such as the Up and Down method (reference 2) and the
Probit method (reference 3) indicated that these methods cannot be applied
satisfactorily under the sample size and technical limitations imposed. As
a result, a study was made to develop a method for selecting stress levels
for testing which required no a'priori assumption regarding the standard
deviation of the unknown strength distribution and could be performed satis-
factorily with sample sizes of the order of fifteen or twenty.
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. Design of Experiments 149

Detailed empirical investigations were performed, using Monte Carlo.
methods with a high speed digital computer, to develop a satisfactory
algorithm for determining successive stress test levels as the experiment
proceeds. Exact maximum likelihood equations were used to calculate the
statistical estimates, /4 , and a- , of the population parameters, p-
and a-, of the distribution of part sirengths. By repeated simulations of

experiments for sampler sizes ranging from ten to 900, empirical curves
were obtained showing the variance in the calculated estimates vs sample
size. After this study was complete, a technical report was prepared
(reference 4). The paper today will discuss some significant results con-
tained in this report.

Since the completion of the study, several applications have been made
in reliability testing electrical and mechanical components. One such
application is presented in this paper by way of illustration.

2. DISCUSSION. In order to proceed with the discussion of the test
method, a specific definition is given regarding the terms "stress" and
"strength" as follows:

Stress is a test factor, such as environmental level or force level
which is applied to the test specimen. Operational stresses repre-
sent the mix of environmental or load conditions that can be expec-
ted to be imposed on a typical specimen during its life. During the
conduct of a "one-shot" test, the stress represents the applied test
factor which is varied in magnitude from specimen to specimen in
a systematic manner.

Strength is a property ascribed to a specimen such that if the stress
imposed on the part is greater than the strength of the part, the
part will fail. Conversely, if the stress is less than the strength of
the part, the part will not fail.

Failure in the sense used above is a general term referring to unsat-
isfactory completion of function, out of tolerance performance, breakage,
or other evidence of malfunction. For each test attempt wherein a stress
is applied to a specimen, there is associated an outcome which is a binary
variable: success or failure.

It is assumed that, given a homogenous sample of replicate specimens,

the part strengths are distributed normally with an unknown mean and
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standard deviation. The purpose of the test method is to select stress
levels in such a way as to generate outcomes which can then be used to
calculate statistical estimates of the parameters of the distribution of
part strengths.

3. PERFORMING THE TEST. In undertaking to perform the "one-
shot" test, there are three steps to be taken which should be followed
regardless of the nature of the application. They are:

1. Establish the criteria of failure, or acceptance.
2. Determine the test interval.
3. Select the stress levels.

The last of these three steps, selecting the stress levels, proceeds con-
current with the actual performance of the test. These three steps are
discussed below.

3. 1 Establishing Failure Criteria,
It is very important that painstaking care be given to the set of ground

rules which will be followed for differentiating between a success or a
failure. For purposes of reliability testing, this means that a careful
enumeration should be made of all undesirable responses of a test speci-
men, such as particular modes of failure, out of tolerance performance,
and any other mode of unacceptable product performance. These criteria
are the very basis for establishing product assurance in the laboratory and
should be reviewed and approved by all qualified parties having a technical
interest in the product.

3. 2 Determining the Test Interval.
in order to proceed with a generation of stress levels for testing pur-

poses, it is necessary to choose a test interval which is used as a basis
for the stress sequencing method. This interval should be selected large
enough to include all possible ranges of strengths of the parts to be tested.
This interval can be made conservatively large, since the "one-shot" method
has been designed to cause the stress levels to be generated in the vicinity
of interest (i. e. , in the vicinity of the distribution of strengths) as the
test proceeds. As a sample illustration, the range for a drop height test
for glass containers designed to withstand say, a six inch drop, could be
chosen to have a lower limit of zero and an upper limit of three feet. The
method of analysis of the data is such that the particular choice of the
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endpoints of the test interval do not have an appreciable effect on the
results for sample sizes of fifteen or more. In the event that the test
interval turns out, as the test proceeds, to be inappropriately chosen,
then the stress levels will tend to converge towards one limit or the
other. In such an event, particularly in the case of reliability testing,
convergence towards the lower level is usually indicative of a totally
unsatisfactory product, whereas convergence towards the upper limit
can be shown to be statistically acceptable by use of the likelihood ratio
te st.

In Figure 2 there is represented the results of an actual none-shot"
test on thermal batteries to determine the reliability with regard to high
temperature. In this instance, the batteries were designed to perform
reliably at 1450F. On the basis of conservative engineering judgement
and some limited development test data, the lower limit was selected
to be 100 F (the level at which all thermal batteries would be expected
to perform satisfactorily) and the higher limit was selected to be 350 F
(the level at which all thermal batteries would be expected to fail).

3. 3 Selecting the Stress Levels.
Once the test interval and failure criteria have been established, the

test commences by selecting the first stress level at the midpoint of the
interval. After exposing the first specimen to this environmental level
and activating it, a one or zero is recorded to indicate the outcome as a
success or failure respectively (see Figure 2).

st
The general rule for obtaining the (n + 1)s stress level, having com-

pleted n trials, is to work backward in the test _sequence, starting at
the n trial, until a previous trial (call is the p trig) is found suclýh
that there are as many successes as failures in the p through the n
trials. The (n + 1) st ess level is then obtained by averaging the n

stress level with the p stress level. If there exists no previous stress
level satisfying the requirement stated above, then the (n + 1) stress
level is obtained by averaging the n stress level with the ýwer or upper
stress limits of the test interval according to whether the n result was
a failure or a success.

To illustrate, suppose it is desired to find the second stress level in
Figure 2. Since there was only one previous observation (i. e. , first
unit failed) it is not possible to find a stress level where all intervening
results even out. That is, the second stress level is obtained by averaging
the first with the lower limit. To find the ei.ghth stress level, it is ob-
served that results from test 4 through 7 (i. e. , the last four results) can-
cel each other out. Thus, the eighth stress level is obtained by averaging
the fourth.
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stress level with the seventh.

As a final example, it is observed that after the twelfth test has been

completed, there again exists no previous stress level for which the
number of failures equals the number of successes. Since the twelfth
test was a failure, the thirteenth stress level is obtained by averaging the
twelfth stress level with the lower limit.

As an aid in identifying the important parameters of the test, the stress

level is designated by the letter s and the outcome is designated by the
letter u. The lower limit of the test interval is designated A and the
upper limit is designated B. Upon the conclusion, of the test, the stress
values, (sl, s2, ... sN), and the corresponding outcomes, (ul, uZ,...,UN),

where N equals the test sample size, are used to perform a complete anal-
ysis for hardware reliability.

4. DERIVATION OF MAXIMUM LIKELIHOOD EQUATIONS. Consider
the random sample X = 1, x2, .. xN) of N observations where the x.

are independent random variable from a Gaussian distribution, g(x;IA, a),
with mean P- and standard deviation a. Consider also an N-dimensional
vector S =(sip s~p ... sN) where AK-s.(B. From this, construct a third

vector U = (ul,u, ... ,uN) where
u. = 1 if s. x.1 i 1

u. = 0 ifs i "x.1 i 1

The variable x. is called the strength of the ith part; s. is called the1 .th 1 '

applied stress level for the i part, and u. is called the outcome of the
th

"test" on the i part. The outcome u = 1 is called a success (i. e., the
applied stress was less than the part strength) and, conversely, u = 0 is
called a failure.

"The object of this development is to obtain formulas for calculating the
estimates ee and ae of /and a , given only S and U. This will be

accomplished by obtaining values of L and a which maximize the like-
lihood (i. e. , probability) of obtaining tehe outcome U given S.

The probability of outcome u. given s, can be written
1 1
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(1) p. Prob [U U.J (v; + (1a-) u.)+f(I v; (, )dv

i

The probability of outcome U can be written as the product of the proba-
bilities of the individual u. since the x. are independent.

1 1
(a) N

The expression P , when regarded as a function of the population parame-
tersp.and a-, becomes the likelihood function for outcome U (ref. 5).

To find the values of 1/and c- (now regarded as variables) which maxi-
mize L, we differentiate (2) with respect to and a- and solve the system

(3) Bln L/lA = 0
Bln L/a/L = 0

where the logarithm of L is used to simplify the algebra.

Letting ti = (si -p-)/L-, go(v) = (Z71) "i/exp (-v2/2), the normalized

Gaussian, and remembering that u. can take on only values of 0 or 1,1

equation (1) can be re-written

(4) lnPi = u. 1jC (v)dv] + (I - u.)lf'4(v)dv]
1

The following definitions (=d) and derivations will be helpful:

(5) G(t) dft go(v) dv

(6) dgo(t)/dt = -tgo(t)

(7) ot/8,LL -1/a- (a-r 0)

(8) Dt/8•- -t/0- (>o0)

Since lnL = l in pi, equations (3) become

(9) 8lnL/E,/L = Z 8in pi/-<- = 0

UnL/aa- = Z 81n pi/8T = 0
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From (4)

_ -ugo i at. (l-uilgo(ti at
S(10) 81n pi/qL. i 0+ i

(p1 - G(ti) a/L G(tP)

':gi u. I1-u.

C 4 -G. G.

where the arguments (and subscript 'to") have been omitted to simplify
writing. Similarly,

(11) Oln pi/8 a- =ti [ui
Sl'-O. G,

Denoting by h. the expression in brackets and eliminating the constant a-,

equations (9) become

d N
8lnL/ 8a/L p(, a-) M Z g.h. 0S~~i=l1

N
8lnL/ a T q(ýk, or) M t.g.h. =

i=i

Equations (12) are valid only if the value of a- which satisfies the maxi-
mum likelihood equations is non-zero. A quick examination of the data
can be made to determine if a non-zero a- is a maximum likelihood solu-
tion. If the maximum stress level at which a success occurred is greater
than the minimum level at which a failure occurred, than a non-zero cr
satisfies equations (12). If this statement is not true, then a- = 0 represents
a maximum likelihood estimate for the standard deviation and the maximum
likelihood estimate of the mean is a connected interval contained between
the maximum failure stress level and the minimum success stress level
which represent the lower and upper bounds of the interval respectively.
The latter situation illustrates an outcome which in fact must be achieved
if all of the part strengths were concentrated at a mass point within the
above mentioned interval. The maximum likelihood corresponding to
this outcome is one. Although unique estimates cannot be obtained for
I- and a- in such an instance, it is possible to provide a basis for deci-

ee.
sion-making, using the likelihood ratio statistic along with a suitably
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constructed hypothesis (reference 4). A result of this type is referred
to as degenerate. It should be mentioned that, for a fixed population
standard deviation,0o / 0, the probability of obtaining a degenerate result
approaches 0 as the sample size becomes large. The proof of these
statements is contained in reference 4 and is beyond the scope of this
paper.

5. STATISTICAL PROPERTIES OF THE MAXIMUM LIKELIHOOD
ESTIMATES. The preceding sections describe the method for selecting
stress levels and the likelihood equations for calculating/e4 and e'

e e
In order to make practical applications of the method, however, infor-
mation is required regarding the statistical properties of the maximum
likelihood estimates corresponding to various sample sizes. To facili-
tate obtaining this information, an extensive computer simulation was
carried out using Monte Carlo techniques. In this way, hundreds of values
of /A and 0e could be obtained corresponding to hundreds of simulatede. e
experiments using random numbers for part strengths. Statistical
summaries were then obtained and the variance of the estimates of the
parameters empirically derived.

To perform the simulation, a standard interval, A = 1, B = 1, was
chosen. The sampling of strengths was simulated by converting the sum
of twelve two-digit numbers, constructed from a file of one millions ran-
dom digits, to a random deviate with population mean/4 and standard
deviation, 0, . Two populations were employed: t- = 0 and 6r= 0..25,
and = 0.2 and 0 = 0. 1. For each population, one hundred runs, each
consisting of N samples, were made for N = 4 through 15, 20, 25, 30
and 35, with an additional four hundred runs for N = 15 and N = 30 for
additional information on the distributions of the estimates. Finally,
four runs of N = 900 were made for each population to empirically inves-
tigate the asymptotic convergence of (/-< ere) to (P-, e).

For each set of 100 runs at a fixed sample size, the mean and variance
were averaged separately and plotted as shown in Figures 3 and 4. Straight
lines were then fitted to the data, recognizing that some spurious effects
are introduced for small sample sizes (i. e., 15 or less) due to the dis-
creteness of the admissible outcomes which are possible. (For sample
size of N, only 2 N outcomes are possible corresponding to the 2 N possi-
ble configurations of 0 and 1. )

Based on the results of Figures 3 and 4, the variance of the estimates
are given by:
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V(A e) = 2. 5 /N

V(Ge )3. ZaI/N

In order to use these formulas in practical applications, the unbiased
estimate of a, denoted •, is substituted for a in the above forrnula.s.'. The
relationship between the unbiased estimate and the maximum likelihood
estimate is given empirically in Figure 5. The variance of the unbiased
estimate can be calculated using the relation

3. -2 3 ._

v2 N 2 - 4
N N~

The above formula is sufficiently accurate for sample sizes on the order of
50 or greater, wherein the distribution of the estimate of the standard devia-
tion approaches the normal distribution. For smaller size samples it was
observed from the empirical study that nA/j- approximately follows the chi-
square distribution with n degress of freedom where n is given by

n = 0. 625P N (reference 4)

where N is the sample size and P is given by Figure 5.
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