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COMPARISON OF APPROACHES TO OBTAINING A TRANSFORMATION
MATRIX EFFECTING A FIT TO A FACTOR SOLUTION

OBTAINED IN A DIFFERENT SAMPLE

Cecil D. Johnson
U. S. Army Personnel Research Office

BACKGROUND. The importance of physical proficiency measures
to the selection and evaluation of Army personnel can scarcely be questioned.
Examination of the duty assignments prevalent in various Army jobs indi-
cates clearly that physical strength, endurance and coordination are often
highly important factors in job success. At the United States Military
Academy in particular, considerable attention has been devoted to physical
training and to the measurement of various aspects of physical abilities or
physical proficiency among cadets at West Point. Various tests of physical
proficiency were introduced in the physical aptitude entrance examination
procedure or studiedfor possible use.. They have been examined both as
individual measures and as component parts of various batteries. Several
factor analyses of large batteries of physical proficiency measures, physi-
cal education, grades, and other variables were accomplished in previous
studies. These studies had as their objective the identification of basic
underlying physical ability variables that possess the simplifying statis-
tical characteristics frequently referred to as simple structure. These
basic variables, or factors, aid in understanding the nature of the scores,
in eliminating duplicating measures, and in suggesting new tests.

The several factor solutions available for comparison contain numerous
variables in common, other similar variables (as when a 2 5 - yard dash is
substituted for a 30-yard dash), and still other variables which are unique
for a particular solution. This paper considers several methods for com-
paring solutions obtained in these separate studies involving physical pro-
ficiency and related measures.

The problem of approximating in a second sample, a rotated factor
solution originally obtained in a previously analyzed sample is also present
in another Army Personnel Research Office research study currently in the
final computing phase. This study involved thirty-one psychological tests.
Some of these tests are measures of intellectual ability, others are meas-
ures of cognitive information, and others are non-cognitive measures in
the "personality" domain. As is typical with Personnel Research Office
factd6k analysis studies, the objective was the identification*of constructs
which would predict the performance of soldiers on the job. In this case the
job was that of an enlisted Infantryman and.the measure of performance was

* obtained from ratings by superiors and peers at the close of maneuvers in
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Germany. The tests had been administered to the enlisted men on their
entry into the Army.

An initial principal component factor solution was transformed by an
orthogonal matrix so as to provide simple structure. The initial factor
solution can be described as a matrix whose elements are the correlations
between the tests and standard length orthogonal reference vectors. This
solution usually provides parsimony in that a relatively small number of
reference vectors is needed to closely approximate the test correlation
matrix when the factor matrix is post-multiplied by its transpose. How-
ever, the psychologist wants the reference vectors, or factors, to have
additional properties implied by the concept of a simple structure. If
simple structure is present among the reference vectors, each reference
vector has high correlations with a few tests and approximately zero
correlations with the remainder. Furthermore, the tests with which a
particular reference factor has a high relationship will be relatively in-
dependent of the other reference vectors. It is apparent that the presence
of simple structure permits the psychologist to interpret the reference
vectors in terms of his test, and if the orthogonality of the reference
vectors is retained, as when the transformation matrix is orthogonal, all
the original parsimony of the initial principal component factor solution
is retained. Psychologists usually refer to the process of transforming
"a solution to simple structure as rotation, and call the transformed solution
"a "rotated" solution.

In the factor analysis of psychological tests described above, the ro-
tated solution, when extended to the rating variables, displayed a very in-
teresting relationship between the rotated factors and the performance
measures. One cognitive factor and one non-cognitive factor predicted
performance while all other factors had a zero relationship with perfor-
mance. It became a matter of considerable interest to determine whdther
these relationships could be verified in an independent sample where pro-
perties of the sample had not been used to determine the particular trans-
formation used to obtain the rotated factor solution. Both factors re-
tained their validity in the cross (independent) sample, but an additional
factor (previously non-valid) also displayed a smaller amount of validity.
In this study the factor validities in the first sample were fairly well repli-
cated in the second sample.

Thus, both studies, the one involving physical proficiency variables
and the one involving psychological tests, require an initial factor solution
in a second independent sample, the transformation of this solution to one
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approximating the rotated solution in the first sample, and finally, the
extension* of the transformed solution to non-overlapping predictor vari-
ables and/or criterion variables.. The criterion variables may well over-
lap across the two studies but should be withheld from the initial factor
analysis for two reasons:

(1) It is desirable that the factors be entirely defined by predictor
variables.

(2) The validity of the transformed factors are being determined in
the independent, or cross sample. Thus, the definition of the factors in
the cross sample must be independent of the criterion variables.

B. F. Green has reported a method for computing an orthogonal
transformation rhatrix which will minimize the sum of squares of the
differences between the transformed matrix and the matrix to be fitted.
However, his derivation does not generalize so as to provide an ortho-
normal transformation that can utilize more reference vectors in the cross
sample than are in the matrix to be fitted.

If the investigator is confident that the initial cross sample factor
solution does not have a rank which exceeds the rank of the solution to
be fitted, this orthogonal transformation is clearly suitable. On the other
hand, if in the cross sample there is likely to be considerable variance
common to two or three variables that is not explained by the more general
common factors utilized in the initial sample, the advantages of an ortho-
normal solution become apparent.

APPROACH AND RESULTS. Thus, in obtaining the transformation
matrix necessary for fitting K factors, the investigator has a choice of
using a method which obtains the best orthogonal transformation matrix
applicable to the first K factors, or he can choose to use a non-square

orthonormal transformation matrix which can be applied to a full factori-
zation, i.e. , to as many factors as there are variables. The first method,
using an orthogonal transformation, requires the fitted solution to reproduce

This factor extension is accomplished by post multiplying the m x n
matrix of correlation coefficients (between the overlapping and non-
overlapping) by A D-l/- , where R is the matrix of correlation co-

y y y
efficients among the n overlapping variables and A'y R A = D'Y

A A-lyyy
A' =A ; D = eigen values.

y y y
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the cross sample correlation matrix to the full extent possible with a
principal component solution. The second method, using an orthonormal
transformation, provides a less exact reproduction of the correlation
matrix, but permits a better fit to the reference factors -- if the dimen-
sionality of the experimental variable space exceeds the number of factors.

Since in the physical proficiency study the number of common variables,
for some of the comparisons, was large as compared to the number of
factors being fitted, and the initial solutions had been obtained using a corre-
lation matrix involving even more variables, the non-square, orthonormal
transformation was utilized. A description of this technique is provided in
the hand-out.

The three rotated factor solutions to which the initial solutions in the
cross-samples were fitted, tended to have smaller communalities than the
four cross-sample fitted solutions. This is possibly explained by two
things. The methods of obtaining the initial solutions (that were subse-
quently rotated in the reference samples) were less efficient that the prin-
ciple component method used for the initial cross sample solutions. Also,
the initial factor solutions in the first sample were obtained to span the
non-common variables as well, whereas the cross sample solutions were
obtained on the common variables only.

In comparing the use of the orthonormal as compared to an ortho-
gonal transformation, it becomes a trade off between the better fit to the
inter-correlation matrix obtained by using an orthogonal transformation
and the better fit to the rotated factor solution possible under certain cir-
cumstances with the orthonormal transformation. The differences between
the two methods in regard to fitting the rotated factor tend to diminish as
the number of factors involved increases. On the other hand, the advan-
tage possessed by the orthogonally transformed solution in: reproducing
the inter-correlation matrix increases. Thus it is clear that the value
of the orthonormal transformation as compared to the orthogonal trans-
formation is least likely when the number of factors in the initial rotated
solution is large. However, the number and nature of the non-overlapping
variables in the two studies is also important.

Since the extension of the transformed solution to the non-common
variables is an important aspect of these studies, the reproduction of the
intercorrelations between the extended factors and these additional vari-
ables is an important consideration.
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It is interesting that the advantage of the orthogonally transformed
solution for reproducing the intercorrelation matrix did not always hold
among the non-overlapping variables. This underlines the fact that the
advantage of the orthogonal transformation matrix in reproducing the cor-
relation matrix in the cross sample is partly due to its more efficient
capitalization on sampling error. This sampling error effect is further
underlined by the fact that for the orthonormal transformed solution, for
one sample, the elements of the residual matrix involving the non-common
variables were smaller. than the elements of the corresponding matrix
involving the common variables. This was, of course, just the opposite
of the results obtained from the orthogonally transformed factor solution.
However, while the initial unrotated solution extended to the non-common
variables, necessarily possesses the maximization properties of the ini-
tial principal component solution for only the common variables, the ad-
vantage, while reduced, was still present for non-common variables in
the larger samples.

The two following questions were raised at the conclusion of the two
USAPRO presentations:

(1) Have factors (i. e. ,. factor pure tests) proved to be good predictors
* of Army performance criteria?

(2) What is the advantage, for prediction, of using orthogonal pre-
dictors over the original correlated predictors if optimal weights are
applied?

The two questions are closely related in that they are both concerned
with the immediate application of factor analysis results to the practical
problem of predicting personnel performance. USAPRO has considerable
research evidence indicating that tests developed to measure factors do
not predict performance as well as factorially complex tests developed to
predict a specific Army performance measure. We have very little evi-
dence bearing on our own factor measurep, since, on theoretical grounds,
we have not expected factor measures to have immediate use as predictors.
Factors are useful constructs because of their simplified (i. e. , more
easily understood) relationships with psychological or physiological mea-
sures and the other factors. Thus, factor scores are useful in experi-
mentally testing hypotheses relating carefully defined psychological con-
tent of a measure to human performance, and the factor concept has gen-
eral usefulness for the better understanding of the psychological content
of a battery of tests. It is not expected that factors willhave immediate use-
fulness as operational predictors.
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APPENDIX I

Formulae and Notation

1. Certain letters will be used consistently to denote specific kinds of
matrices. Different matrices of the same type will be discrimin-
ated by their subscripts.

Sa gramian matrix whose elements are product moment
correlation coefficients.

P a principal component factor solution.

A an orthogonal eigen vector matrix derived from a gramian

matrix.

D eigen value matrix.

F a factor solution other than a principal component factor
solution.

Sa transformation matrix whose elements are cosines of
the angles between reference vectors (factors).

II. The following formulae relate several of the above matrices:

A'RA = D, AD1/2 = P, PP' = R, P'P = D

FF' = R, F'F# D

FT I F T1 (F'FF)- F'FYI X' 1 y yx
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xII. Table 1

A, Sectioned Matrix Whose Elements are Projections*
Involving the Row and Column Variables

(As computed in the second sample)

Rotated Factors PC Factors in Space De- Experimental
from lst Sample fined by Rotated Factors Variables

from 1st Sample

F ............ F o . ....... Fok ........ .....

Rotated Fx 1X Fx
Factors . =T'T I P = AL D

First PT =F Ix p L ALD
ro•:I I

Sample I.
(kf.n) F.... T D'A AL RL ALDL

a ,I ,,.,•I

Principal e.
Component 7
Factors *

(PC Factori- :T =D-1A' F Fy DTA

Lation of T I, T AL DL-
R~ 2  Y x yA;RAy=

yn y

Experimental .f gIl
*x I YI

Variables - T FTI
X yR 2 1yL y 3

Fx Ax 1 FL = F ALD7I

nX AX~XXA = DF

T hese projections are cosines vhen both row and column vectors are of unit length.

*~If k = n, RL 11 F-1 F. -However, in almost all practicali situations, k, the

number or rotated factors, will be considerably smaller than n,, the number of
variables.
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IV., Green's Procedure

Problem: In order to fit a factor solution of k factors (i. e., P )

in the second sample to a rotated factor solution, F , in the first sampleX

(i.e., P To =F ), compute T such that tr (P T -F )'(P T -F)
yko x o yko 0 yko0 x

is minimized, while meeting the side constraint that T' =T-1
0 0

Solution:

(a)- To (Pk FF' Py I/ F P contains the k columns of
o yk x x k yk x' yk

P y, the complete principal component factorization of R y, corresponding

to the k larger roots of D . P = A D where A'RA =D andR
.y y y y y y y y y

is the product moment correlation matrix for the experimental variables
in the second sample.

(b) To can also be Computed from the least square transformation,

T= D P, F
1yk yk"x

T = (DyTIT Dy)-I/2 DyT1

(c) A slightly different orthogonal transformation matrix, T , can
be derived by -directly orthogonalizing the T as follows:

TX =T'O ,T'pXT

-x-1 x( u)-l/2

TX= T , X (T1T1

Green, B. F. The orthogonal approximation of an oblique structure in
factor -analysis. Psychometrika, 1952, 17, 429-440.
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T = (TIT;)-I/ZT 0

Properties of T 0
0

The orthogonally transformed factor solution, P ykTo, retains the

maximum reproduction of R (i.e., P T TOO Pk = P Pyk). When
y ykoo yk ykyk

communalities are substituted for ones in the diagonals of R and if they

rank of R becomes K, this is undoubtedly the best procedure fory
fitting F .

x

V. Alternative Procedure

A non-square (orthonormal) transformation matrix permitting the full

utilization of P can be developed as follows:Y

t. Whereas T in the previous model provided a least square fit,

T2 in the model below provides an exact fit (since P has an inverse2 y
while P does not when k < n.)

P T = F ; T P-1 F D"l/2 AI F
y x y x y y x

b. The factor matrix Fx, computed and rotated in Sample 1,

cannot usually be obtained by an orthogonal or orthonormal transfor-
mation of P y, computed in Sample 2. The transformation of Py T 2

into a solution within an orthogonal frame F L can be accomplished
as follows:

FyL = T (ALD/ 2/2

c. While the matrix Fy. contains K column vectors (factors)
spanning the same space as the oblique factors in F , the orthogonali-X °0
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zation was not accomplished in such a way as to maximize the fit of
F to F . The additional transformation required to effect this

yL x
fit can be accomplished by using Green's procedure to obtain orthogonal
matrix T as follows:

02

F T =F
yL 02~ x

T02 ( yL F x xyL y-l/2FL F x

T =,[/2 Al (F' Fx , AL D,/2 -1/2 D2,,/2- AL(F cFx)

d. Thus the ortnonormal transformation matrix T which mini-
m

mizes the trace (P T - F )'(PyT - F ), where T is an n x k

orthonormal matrix is,

T TADl /2 ..lF -F'2 ADl-/2l -V- D-l/2 A'.(F'"•Fx
m 2 L L L x LU L Lx

VI. An orthonormal transformation matrix T providing a least squaren

fit of T nto T as compared to the fit of FyL to Fx in Part V, can

be provided as follows:

a. The conversion of T2 to an orthonormal matrix, T3s
spanning exactly the same space can be accomplished as follows:

T2T2 RL

T = T ALD /2 T'3T =I
3 2LL 3 3
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b. While T3 is an orthonormal matrix, it is not the orthonormal

matrix with the best least square fit to T . There is still the need to

minimize the trace of (T3To2 - T )I(T3To2 - T2), where T is an ortho-

gonal matrix. This can be accomplished by making use of Green's pro-
cedure described under IV(a).

T =,(T'3T 2T3) ,/2TT

02 32 3) 3.

TV3Tz T-1T'T PxLRL = Px since P-1 D
32 XL 2 xL L IXL' xL L L

TxL-I/2 p, -i/2 pI
T02 (P:L <xL) XL L L xL

02

To = A'
Le

c. Thus the n x k orthonormal transformation matrix T
n

which minimizes ( in the least square sense ) trace (T - T2)P

(Tn - T 2 ) is equal to,

T3Toz = T A D-'/ZA'-A T (T'ZTz)T1/2
3o 2 L L L 2 ' 2

Tn =T2 (TV2T )-I/2

Note the similarity in the form of the computing formulae used to
describe T and T . T = (T IT')1/2 Tn p p 1



Design of Experiments 131

APPENDIX II

The Comparison of Transformation Matrices

I. Method

The variables included in the rotated factor solution in the first
sample are designated by x and the rotated factor solution by F

"x
The same (i. e. , overlapping) variables in the second sample are desig-
nated by y and the non-overlapping variables by z. The factorization
of R and R are accomplished as P = R A D-l/2 and F = R A D

y z y y yy z yz yy
The transformed factor matrices in Sample 2 are F = P T and F =yr y zr

F. T. Each transformation matrix, T, computed by the methods des-
z

cribed in Appendix I, is evaluated by determining the fit of F to Fyr x

and the reproduction of R by F F' , R by F F' and R by
y yr yr yz zr Yr z

F F' This is determined by comparing (for the different T matrices)
zr ir

* the traces of the following product matrices:

(F - Fx)'(F - F) , (F Fi - ' (F F' R
yr x yr X zr yr yz zr yr yz

(F F' - R z) ' (F F' - R ) and, after setting diagonal
zr zr zr zr z

elements of F V and R equal to zero, (F F' - R )'(F F' - R ).
yr'yr y yreyr y yry y

II, Results

The sums of squares of the residual matrices, computed as the traces
of the matrices indicated in Part I above, are provided in Table 1 for a study
involving physical proficiency measures. The x sample consisted of Z54
West Point Cadets of the class of 1949. The y sample contained 294 West
Point Cadets of the class of 1964. Table 2 relates to a study involving
the following x and y variables (in samples Land 2 respectively): 15
"Personality" tests, 9 information tests, and 8 mental aptitude tests. Five
rating variables based on performance as Infantryman, make up the z vari-
ables. Sample one (x variables) had 550 examinees and sample two(y vari-
ables) had 375 examinees.
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The rank ordering of the magnitudes for the v ' arious entries in Tables
1 and 2 can be readily predicted from the algebraic formulations of the T's.
The relatively efficiency for fitting F., going from high to low, is T M,
T ni Top T p . The relative efficiency for reproducing the R matrices is

the same for all T's which are eit-her orthogonal or capable of being linked
by an orthogonal transformation. Thus all the orthogonal T matrices
have more efficiency for reproducing R y , when applied to PC solutions of

R , than do the orthonormal transformations.
y
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