
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP014245
TITLE: Nucleation Induced Nanostructures

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Materials Research Society Symposium Proceedings Volume 740
Held in Boston, Massachusetts on December 2-6, 2002. Nanomaterials for
Structural Applications

To order the complete compilation report, use: ADA417952

The component part is provided here to allow users access to individually authored sections
)f proceedings, annals, symposia, etc. However, the component should be considered within
[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP014237 thru ADP014305

UNCLASSIFIED



Mat. Res. Soe. Syrup. Proc. VoL 740 © 2003 Materials Research Society 13.3
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Laboratoire de Physique de ]a Mati~re Condens6e, CNRS 6622, Parc Valrose, F-06108,Nice
Cedex 2, France

ABSTRACT

Numerical simulations in films and aggregates have repeatedly shown the presence of
vibrations during a phase transition and/or the appearance of periodic structures. A phase
transition could be controlled and novel nanostructures created by astute manipulation of
such phenomena. In order to study the occurrence and effect of wave-like phenomena, the
dynamics of a first order phase transition is described using kinetic theory. At a first order
phase transition, the initial phase is replaced in time by the new phase on propagation of a
density front through the sample. The dynamic stability analysis studies the transition to the
uniform phase by propagation of the front and provides the conditions for the formation of
transient periodic structures by a local increase of density. The results apply also to spherical
geometry and a discussion of cluster dynamics follows the planar case.

INTRODUCTION

In a first order phase transition, the emerging stable phase displaces the original phase
by the dynamic process of nucleation and growth. Between the two phases, a contact forms
which propagates as an interfacial profile, providing a practical method to produce materials
in thin layers. Applications are well known in thin films and coatings of metals,
semiconductors and polymer materials for use in electronics, optics and in the surface
modification of materials to improve mechanical or chemical properties.[ 1]

A phase transition could be controlled and novel nanostructures created by excitation
of waves. Numerical simulations in films and aggregates have repeatedly shown the presence
of vibrations during a phase transition and/or the existence of specific wave-like motions [2-
6] which effect the shape, the morphology and the propagation of the interface.

THEORY

In order to study the occurrence and effect of wave-like phenomena, the dynamics of
a first order phase transition is described using kinetic theory [7] for the evolution of the
probability distribution of particles f(r, t) or the number density n(r,t)= nf(r,t), n being the
total number of particle per volume. The function n(r, t) measures the probability for a
particle to arrive at position r after a time t and fulfills the equation of continuity:
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dn(F, t) do-
14 O- . j( , t) (1)

The evolution of the flux j (r,t) = n(r,t) v(r,t) , v(r,t) being the average velocity of the
particles of mass m, is described by the dynamic flux equation,

I d
•-=-3- mn(i:' t)- ,Iu1, t) (2)

The friction forces of the medium are included in 3. We concentrate on the dynamics of a
system which, having achieved uniform temperature, is dominated by particle flow. The
driving force of the transition is the gradient of the local chemical potential p(r,t). The
chemical potential is enslaved by the density and in the effective interaction model [8]:

K
,u(F,t) = ,(n) - 2-n(ft) (3)

The function g (n) is the bulk chemical potential, the second term takes local variations of the
density into account. The constant ic is related to the range of the interaction potential
between particles.

At a first order phase transition, the initial phase is dynamically unstable and is
replaced in time by the new stable phase on propagation of a density front through the
sample. The transition from the two phase "kink" solution of eq. (1) and (2), as described
below, to the final phase of uniform density is of interest to the dynamics of the phase
transition which proceeds by propagation of the front. The velocity of the front, its shape,
stability and the structure that is left behind are studied.

RESULTS

In heterogeneous nucleation the phase transition is initiated on the interface. The new
emerging phase may grow and replace the initial phase under certain conditions which will
be defined by analysis of the dynamic stability for different initial conditions. The dynamic
stability analysis will show that the "kink" of density n(x,t) = nj, x <L(t) ; n(x,t) = no, x > L(t)
is linearly unstable to a long range local increase of density at the surface. The function L(t)
determines the boundary between the phases, the initial phase of density no and the new
emerging phase of density n1, and describes the propagation of the kink.
The two kinetic equations are combined by taking the time derivative of (1), inserting (2) and
using (3): -- =- + co" [-S r(x, t) - -XT q(x, t)] (4)

The dynamic equation (4) is linear in a small perturbation rl(x,t) = n (x,t) - n jfor x>Oand its
derivatives and valid in the region close to the state of density no for x>O and il(x,t) = 0 for
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x<0. The velocity of sound in the initial uniform medium is c0
2 - d(n,) nd ý is the

density correlation length.
In one possibility, the initial phase wets the emerging phase and the initial conditions

are Tl (x,t=0) = jo exp(-q x), j(x,0) =0. The resulting perturbation is exponential and
q(x,t) exp[-qx + ax]. The left hand side of (4) determines the dispersion relation (0(q):

o(q) = 2 (-8±13 8 +/F(q)) (5)

F(q) = 4q2
IC2 (I- _ 2q2 )

Different behavior is found for different values of wetting layer thickness and a critical length
emerges. The critical wave vector is q , for which Im co(q, ) = 0 or I +F(q )/p3 2= 0.
For q>qx, The solution is a damped vibration which causes the initial wetting layer to vanish

with time. 77(x,t) = r., exp[-qx - fi / 2]Icos(Qqt) - 2-, sin(fqqt)]. The dispersion relation of

the elastic vibration is Q= - f 2 - F(q) . The kink is dynamically stable, the transition

will not be triggered by this small scale perturbation.

For I / • <q <q ,the dispersion relation is real and negative and translation sets in. For
example for q7-1 / , the perturbation front recedes with a velocity vý and decays with time.

17(x,t) = 7 exp[-q(x + vt)]exp(-9)

2c, 
2

For q < 1 •, the dispersion relation is real and positive. For qý <<1, the perturbation front
advances with a positive velocity v:
l(x, t) = % exp[-q(x - vt)]

C02 q
v=- (lq 2

C')

For stationary total number of particles, the velocity of the interface dL/dt must be equal to
the average flux of the particles normal to the interface [9] and
dL/dt = - Jx (Lt) / (n -n0 -TI (Lt)) (6)
When the density of new phase is larger than that of the initial phase (such as on
condensation or crystallization) nj > noand il >0. For I /] < q < q , the value of the
density at the front edge decreases as the na front propagates into the initial phase. The front
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motion L(t) is initially linear in time and advances slower than the perturbation. After a
sufficiently long time, the motion ceases as the initial perturbation is incorporated into the
front. For a fluctuation with q <1 /I, the profile edge L(t) recedes and the no phase vanishes.
The value of the density at the profile edge increases with time to conserve particle number.
A convective instability occurs; the localized perturbation grows while moving away from its
initial location although at a fixed location it appears to decay.[9] The discussion is similar
when the density of new phase is smaller than that of the initial phase (such as on evaporation
or melting) with nI < noand flo< 0.

The phase transition can be also induced by periodic deformation of the initial phase.
Setting q --- iq , the dispersion relation 0o(q) is obtained from (4). There is a critical wave
vector Q, with Im co(Q,) = 0. The solution is a damped wave for a periodic fluctuation in the
initial phase of small wave length or q> Q, and the initial profile is stable. For a wave length
larger than the critical length or wave vector q < Q, the dispersion relation is real and
positive and the solution is a front which advances as the periodic deformation decays.

The results can be applied to spherical geometry and the discussion of cluster
dynamics follows the planar case. The linear stability of the classical cluster, defined as
n(r,t) = n, (r<a) and n(r,t) = no (r>a) , to a local increase of density at the surface r = a of the

cluster proceeds as before. For a fluctuation rl(r,t) = 0 for r<a and ?7(r,t) = q0 exp[-qr + ox],
1"

r>a, which increases the density near the surface, the linear equation (4) is obtained in radial
coordinates for the function rl(r,t)r. For stationary particle number, the dynamics of the
cluster radius a is given by the radial flux at the surface: da/dt = - j, (a,t) /(n -no -1 (a,t)) [4].
The cluster is stable and damped vibrations are induced for q > q,. For 1/ ý < q < q, front
propagation sets in, the cluster will start to grow with a decreasing density at the cluster
surface[ 10]. For an initial thick layer of width q<l/ , the cluster is unstable with possibly a
transition to nonspherical shapes. In contrast, for the solution described in [ 11], the
unfavorable surface to bulk ratio always inhibits growth in small clusters.

CONCLUSIONS

In experiments or numerical simulation, the boundary and initial conditions within the
cell determines the dynamics observed. To start a phase transition by wetting, the parameters
of importance are ý -I and ýP/ c(, in the initial phase. If favorable, a large range of possible
fluctuations causes the initial phase to become dynamically unstable and propagation and
growth of the new phase sets in. Vibrations are excited for small scale initial fluctuations at
the onset of a phase transition. In real systems, a complex signal will emerge but the resulting
turmoil dies down after P"'. The characteristic time is sufficiently long in polymer systems to
freeze the transient states, resulting in small scale periodic micro- or nanostructures.
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