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Abstract
Multiple configurations in various stages of aircraft design have to be experimentally tested and

validated to study the performance of various systems subjected to non-deterministic design parameters.
These tests are expensive and time consuming, increasing the acquisition cost and time for military
aircraft/equipment. Therefore, analytical certification aims at reducing/eliminating the expensive prototype
testing during these intermediate design stages by propagating the input variance through the design.
Analytical certification involves modeling the variance/uncertainties in the design parameters and
estimating the variance in the component/system performance.

Based on the nature and extent of uncertainty existing in an engineering system, different
approaches can be used for uncertainty propagation. If the uncertainty of the system is due to imprecise
information and lack of statistical data, the Possibilistic theory can be used. During preliminary design,
uncertainties need to be accounted for and due to lack of sufficient information assigning a probability
distribution may not be possible. Moreover, the flight conditions (loads, control surface settings, etc.)
during a mission could take values within certain bounds, which do not follow any particular pattern. The
uncertain information in these cases is available as intervals with lower and upper limits. In this case, the
fuzzy arithmetic based method is suitable to estimate the possibility of failure. The use of surrogate models
to improve the efficiency of prediction is presented in this paper. Various numerical examples are
presented to demonstrate the applicability of the method to practical problems.

Introduction

Aerospace structural design involves analyzing various disciplines like structures, controls,
aerodynamics, aeroelasticity, electromagnetics, etc. The design process requires integration of multiple
disciplines to model the actual behavior of the system. This complex design process usually becomes
challenging with the presence of uncertainties in material properties, loads, boundary conditions, geometric
properties, manufacturing processes, environment, and mathematical models. Incorporation of these
uncertainties into the design enables the prediction of the aircraft performance variation in the presence of
uncertainties and more importantly their sensitivity for targeted testing and quality control.

The traditional way to propagate the uncertainty is to use safety factors in the design, which
essentially ignores the source of a given uncertainty. This safety factor approach produces designs that
satisfy all the requirements but not optimum for the given conditions. Moreover, the safety factor based
approach is suitable and applicable for situations where the new design is a derivative of an existing
design. It becomes impractical and expensive to apply the safety factor based design to new systems
because this procedure requires extensive testing to assign a safety factor that produces a conservative
design.

As the complexity of the multifunctional structure increases, the cost of manufacturing the prototype
to validate the designs and determine the level of safety would increase alarmingly. Thus, the need for
analytical certification of components is compelling. Uncertainty quantification techniques are tools that
aid in analytical certification. Uncertainty quantification and their effects are not unique. They depend on
the amount of data engineers incorporate about a particular event or variable. Depending on the
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information available, the designer has to choose the quantification technique that would propagate the
uncertainties through the system. Depending on the nature of information available, various techniques are
appropriate for propagating the uncertainty through the system integration and design process.

In engineering design, the designers often have to deal with uncertainties in structural loads, material
properties, initial conditions, control system settings, etc. The uncertainty can be classified as random and
non-random. The random uncertainty can be dealt with by using the existing probabilistic methods and the
safety of the design can be quantified [1-6]. In situations where the information required for assigning the
probability distribution to a variable is not available, the non-randomness comes into picture. The
impreciseness of the parameter is available as a bound. Various interval analysis techniques are available
to deal with variables that have bounds. However, these techniques provide one bound for the response
compared to the fuzzy approach that provides the bounds on the response at various confidence intervals.
From the literature available on fuzzy arithmetic approach, fuzzy set models, which require little data,
appear to be well suited to deal with design under uncertainty when little is known about the uncertainty.

Interval data might be available from the sparse output of instrument measurements; the mean of a
normal distribution could be available from many experts; parameters of another distribution fit with high
precision from a large collection of measured point data; and finally, the mean of another distribution may
only be presumed to lie within an interval. Also, in real situations, the uncertainty in a given input
parameter might be independently estimated from several completely different sources and thus have
completely different mathematical representations.

Fuzzy theory provides a means by which incomplete or subjective information can be represented in
an analytical form. This kind of uncertainty can arise during design and manufacture, where a geometric
parameter, x can be subjected to tolerances as x ± Ax. Moreover, no additional information is available
to assign a probability distribution within the interval. Then the parameter can be treated as a fuzzy
number. The main advantage of the fuzzy theory is that it can accommodate the confidence levels of
variables and as the design progresses, the design need not be reevaluated to obtain the new bounds on the
response due to change in confidence levels of the design parameters. These bounds will be available for
any confidence level from 0 to 1, once the design is analyzed using the fuzzy theory. The technique used
to construct the fuzzy number for the uncertain variable is discussed in the later section.

In 1965 [7] Zadeh provided the first tools, i.e. fuzzy sets, specially devised for dealing with
vagueness. Since then various researchers have advanced the subject and its recent applications are in areas
like artificial intelligence, image processing, speech recognition, biological and medical sciences, decision
theory, economics, geography, sociology, psychology, linguistics and semiotics. Literature has shown that
it is indeed a useful tool to quantify the impreciseness and vagueness present in real-life problems. Most of
the engineering applications have been in controls, decision-making and optimization. Kaufmann and
Gupta in Ref [8] reviewed the area of fuzzy arithmetic. Buckley and Qu [9], Sanchez [10], and Zhao and
Govind [1I] investigated the mathematics of fuzzy equations and their solutions. These solution methods
are applicable to problems with explicit response functions and inapplicable when the response is implicit.
Vallipapan and Pham [12] introduced the use of fuzzy information in the finite element analysis of
geotechnical engineering application. In their work, the authors used fuzzy sets in the finite element
formulation to model the elastic soil medium. They introduced the lower and upper fuzzy bounds values
for the input parameters at a particular membership level, or a cut, and solved the resulting deterministic
model.

Fuzzy finite element analysis can be broadly classified into two categories, namely, explicit and
implicit techniques. In explicit techniques, the solution of the response is explicitly obtained by operations
on an a level representation. The advantage of this method is that the interval equations as a function of
a are solved only once and the bounds on the response at any a level are readily available. However, this
method has its practical problems including the possibility of obtaining unbounded, unrealistic and non-
unique solutions to the response bounds. Moreover, these methods are still being developed and they have
not been well tested since they do not use the legacy finite element software.

The second category is the implicit formulation where all the binary combinations of the extreme
values of the fuzzy variables at a particular a level are explored and the bounds of the response are
obtained. At each combination of the variables, one finite element simulation is required and the
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computational effort involved is exponentially related to the number of variables. The implicit methods
result in exact bounds (provided there is no maxima or minima within the bound) at a considerable cost.

Braibant et al [13] presented non-deterministic possibilistic approaches for structural analysis and
optimization. If the system is fuzzy, it is possible to establish a connection between the interval method
and the fuzzy analysis by using the concept of membership level or a -cuts. a is actually the level of
satisfaction, which changes from 0 to 1. At the level of satisfaction a , the variation domain of the variable
x is given by the interval [ ' a ,j , ]. By representing the design parameters using a -cuts approach, all the
interval expressions involved in the analysis can be evaluated at different fuzzy levels or a values. In
practice, the fuzzy response of a structure is computed in three steps. First, the fuzzy members describing
the parameter uncertainties are sampled for different degrees of membership in which each parameter is
given an interval. This is what is called "fuzzification". Second, the finite element equilibrium equations
are solved at each level, leading to the corresponding variation intervals of the structural responses.
Finally, putting the intervals together for each structural response, the interval related to different degrees
of membership allows the fuzzy response to be built. Difficulty arises when solving the discretized interval
equilibrium equations.

In order to improve the efficiency of the above solution algorithms involving fuzzy data, the
Hansen Algorithm [14], Neumann Approximate Vertex Solution and Vertex Solution [15] were introduced
in Ref. [13]. The Vertex Solution is considered as the most robust but the computation cost could be
prohibitive when the number of uncertain parameters is very large. The Hansen Algorithm is one of the
most popular explicit direct algorithms and the iterative algorithms of the Gauss-Seidel or Jacobi family
have to be used as a basis to solve the interval linear equation system. For the Hansen Algorithm, two
modifications were introduced to limit the occurrence of unbounded solutions in the basic algorithm.
These methods are applicable for implicit problems whose response behaves in a linear fashion. However,
in most engineering problems, the response is highly nonlinear and a linear approximation at the central
values could lead to erroneous results. For the Neumann Approximate Vertex Solution, the linear
approximation is used for the stiffness matrix and the load vector with respect to uncertain parameters. The
number of numerical simulations for Neumann is 2 n, where n is the number of uncertain variables.
However, the "Vertex Solution" requires 2n number of simulations. The cost involved in vertex method is
exponential and it is not a viable solution to large-scale engineering problems.

Akpan [17] et.al presented response surface based fuzzy analysis. In their work, they have
constructed a second-order response surface model and used this response surface to evaluate the function
value in the vertex method. This method is applicable to problems with a limited number of uncertain
variables since the cost of building the response surface increases with the number of uncertain variables.
Moreover, the vertex method fails to capture the accurate bound when the function has maxima or minima
within the range of the input parameters.

The above-mentioned difficulties in dealing with the fuzzy based analysis of structural systems are
dealt with in the current study. In this current study, fuzzy set theory is applied to quantify the non-random
uncertainties. The ability to efficiently handle large-scale implicit problems with high degree of accuracy is
a salient feature of this method. The imprecision or fuzziness in the response of interest is calculated by
using the Zadeh's extension principle. The computational implementation of the extension principle on
implicit functions like a Finite Element Analysis (FEA) model or the Computational Fluid Dynamics
(CFD) model is performed with the use of high quality function approximations. These function
approximations reduce the cost involved in actual function value evaluations. Examples are provided to
demonstrate the solution procedure and the applicability of the method.

Using the definition of the fuzzy number, the available uncertain information can be used to
construct the fuzzy number. The present method is used to model the uncertainty when the available
information about the uncertain variable is limited. The following section discusses the technique used to
model the fuzzy number using the available information.

Triangular Membership Function
In structural engineering it is often possible to acquire knowledge about various parameters in the

form of low, probable and high values. Based on this information, the membership functions can be
constructed. Following the concepts of fuzzy set theory the parameters are modeled as fuzzy numbers,
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where the information is imprecise due to vagueness. In this work we have adopted the suggestion found in
Ref [12] to define a linear membership function.

The two extreme left and right fuzzy members L' and H' respectively, at p(x) = 0 are defined

as

asL' - P-2(P-L), PŽ2(P-L)
0, P•< 2(P - L)

H'= P + 2(H - P) (6)

where L, P, and H are the expert's estimates of low, probable and high values, respectively.

The following triangular membership function is obtained:

0 x<L'
x-L' L'" x•P

P- L"
'U(x)= H'-x P:x•Hx (7)

H'-P

0 x>H'

Several different shapes of membership can be used for different types of imprecision. This
methodology permits the solution of problems involving imprecisely defined geometry, external loads,
initial conditions, etc.

Multi-Point Approximation
The approximation technique used in this paper is the Multi-Point Approximation (MPA)

technique. The multi-point approximation can be regarded as the connection of many local
approximations. With function and sensitivity information of limit-state already available at a series of
points, one local approximation is built at each point. All local approximations are then integrated into a
multi-point approximation by the use of a weighting function. The MPA can be written using the following
general formulation:

K

F(X j W, (X W, (X (8)
k=1

where k is the number of local approximations, Ek (X) is a two-point local approximation and Wk is a

weighting function that adjusts the contribution of Ek (X) to F (X) in Eq. 8. The evaluation of this

weighting function involves the selection of a blending function and a power index "m". The procedural
details for evaluating the weighting function are discussed in Ref. 18.

The weighting function is given by the equation

Ok (X)

Wk (X) = OK(x (9)
Y 0'j (x)
j-1

where Ok (X) is the blending function. The blending function used in this paper is given by:

1
(x) =( - (10)h k
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This blending function combines the local approximations into one MPA and controls how fast the
MPA adapts to the local approximation at a particular design point. The local approximations considered in
this paper are TANA2 and they are of the type,

n F(X 2) X (X i1Pi P2
11 )(Xz)+ZpFX2) •-1

F(x) = --2)+Ii,2)-} e (i--i,2) (Il

i=1 pi A 2 i-I

where X2 is the expansion point for the approximation. X, and X2 are two design vectors at which
the function and gradient information of F(X) are used to build TANA2 model. This equation is a second-

order Taylor series expansion in terms of the intervening variables yi (yi = x[' ), in which the Hessian

matrix has only diagonal elements of the same value E. Therefore, this approximation does not need the
calculation of the second-order derivatives.

The construction of MPA requires sampling (D-Optimal design) in the entire domain represented
by the uncertain variables. Design of experiments technique is used to efficiently select the data points
required for the construction of MPA.

These types of designs are always an option regardless of the type of model the experimenter
wishes to fit (for example, first order, first order plus some interactions, full quadratic, cubic, etc.) or the
objective specified for the experiment (for example, screening, response surface, etc.). Given the total
number of treatment runs for an experiment and a specified model, the computer algorithm chooses the
optimal set of design runs from a candidate set of possible design treatment runs. This candidate set of
treatment runs usually consists of all possible combinations of various factor levels that one wishes to use
in the experiment.

Uncertainty Quantification Method

The problem dealt with here is the estimation of the membership function of the response subject
to uncertain input parameters. The uncertainty is non-random and it is defined using the fuzzy set theory.
The estimation of the fuzzy membership function for the implicit response requires the use of interval
analysis at each a level. The interval analysis techniques available in the literature as discussed earlier use
linear approximation at the central values or evaluate the function at all the vertices formed by the lower
and upper limits of the uncertain variables. These methods require a significant number of function
evaluations and sometimes fail to capture the bounds of response for non-monotonic response functions.
Therefore, a method using the nonlinear function approximations to reduce the computational effort
involved in the analysis is presented. The UQ method has two main tasks: (1) Fuzzification; and (2)
Computation of fuzzy response based on extension principle. These are discussed below:

Fuzzification

A fuzzy set is an imprecisely defined set without a crisp boundary and it provides a gradual
transition from 'belonging' to 'not belonging' to the set. The process of quantifying a fuzzy variable is
known as fuzzification. When the input parameters are uncertain then they have to be fuzzified. This is
done by constructing a membership function (possibility distribution) for the variable. In the present work,
convex normal triangular membership functions are used to characterize the fuzzy input variables.

Fuzzy Membership Function Estimation

In order to employ the extension principle, the membership function of the response is obtained
from the surrogate model of the response, using multi-point approximations. Then this approximation is
used along with the numerical estimation method for estimating the membership function of the response.

The following are the main steps involved in the approximation of the response

1. Use design of experiments to obtain the location of design points that are used to approximate the
response
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2. Perform actual analysis and obtain the function value and gradients of the response at the above
selected design points

3. Construct TANA2 at the design points and blend them into a single approximation using the Multi-
Point Approximation (MPA) techniques

Uncertain Invut

Fuzzification

Define fuzzy membership functions for the Evaluate the function value at the
input variables randomly sampled data points using

MPA

Design of Experiments to obtain the data Construct local TANA2 approximation in the
points vicinity of maximum and minimum function values

Construct Multi-Point Approximation Determine the minimum and
maximum of the response using an

I 'optimization technique

Discretize the fuzzy input membership L-
functions

At each discrete interval, perform the numerical simulation to - -
obtain the membership function of the response

Figure 1 Possibilistic Structural Analysis Algorithm

Once the fuzzy input variables and the approximate response function are available, the vertex
method can be used on the approximate response function to obtain the bounds on the response. However,
the vertex method is computationally expensive and does not produce accurate results when the response is
non-monotonic. Therefore, a more robust method to accurately estimate the bounds of the response at
different possibility levels is presented in this work.

The following are the steps involved in estimation of the bounds on the response:

1. Discretize the membership function of the input parameters at various a cuts (possibility levels). At
each of these discretized level the maximum and minimum of the response are calculated to construct
the membership function of the response.

2. Evaluate the approximate function value at randomly sampled data points for each discretized a level.
The data point that results in a minimum function value is used as a starting point of the optimization
process. The data points are selected by using uniform distribution for sampling. This assumption of
uniform distribution does not affect the final result because it is used only to sample the data. Use of a
different distribution would assume bias towards a certain region in the entire design space and would
result in erroneous results.

3. Use TANA2 approximation during the search process to reduce the computational cost. The TANA2
approximation is constructed using new data points in the vicinity of the data point determined in step
2.

4. Repeat step 2 to obtain a maximum value of the response by constructing new TANA2 approximation.

Once the minimum and maximum values of the function are obtained, the membership function of the
response can be determined. Using this membership function the possibility of failure for the structure can
be determined using the possibility theory. Figure lis a pictorial representation of the UQ method. The
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process in the dotted lines, in figure 1 is the numerical technique used to determine the membership
function of the response.

Flexible Wing Example

Figure 2 shows the structural model of the flexible wing whose membership function for the
frequency response is considered. The structure represents a fighter wing model with all the dynamic
characteristics. There are 118 nodes in the wing section, 12 nodes in fuselage part and one reference node.
The connection of the wing to the fuselage is modeled using simple beam elements. The upper and lower
skins are modeled using quadrilateral and triangle membrane elements. The rib and spar webs are
represented by shear panel elements, while the rib and spar caps are represented by rod elements. The
vertical stiffness is supported by rod elements.

The wing structure is composed of 562 elements, which are classified as skins, ribs, spars, rib caps,
spar caps, and posts. The weight of the whole fuselage is 16,000 lb and due to symmetry, each wing carries
8,000 lb. In addition to the load, 1,600 lb of nonstructural mass is distributed among the free nodes. First
natural frequency of the structure is considered as the response in this example. The structure is analyzed
using the finite element software ASTROS [201.

The response function considered in this example is as shown below:

G(X)= (2 f)2 I

where f is the lower limit on the fundamental frequency that is 3.0 Hz. and A, is the fundamental
eigenvalue. The vector X represents all the uncertain variables defined as triangular membership functions.
Table 1 shows the lower and upper limits of the uncertain variables along with the central value used to
construct the triangular membership functions.

The uncertain variables are obtained by using physical linking of the design parameters in order to
reduce the size of the 562 element problem. Physical linking facilitates the reduction of number of
uncertain variables, so that manufacturing and assembly issues are represented in modeling. At the same
time, the computational schemes can be applied to practical large-scale problems. Upper wing skin is
modeled to have the chord wise element thickness as uncertain variable. This linking results in seven
uncertain variables for the upper skin since there are seven rib sections excluding the root. The lower skin
properties are matched to the properties of the upper skin. The upper and lower spar caps are assigned one
uncertain variable. The leading edge spar web is assigned one uncertain variable and the upper and lower
spar caps are assigned one variable. Seven variables are used to model the spars. There are seven rib
sections that are assigned one uncertain variable each. The upper and lower rib caps are modeled as one
variable. The smart actuators are modeled as one variable and the vertical stiffeners are modeled as another
variable.

The values of the uncertain variables are taken from an optimization study. The optimization study
was performed using the weight of the structure as the cost function and this is minimized subject to a
frequency constraint. A lower limit of 3 Hz was used as a constraint on fundamental frequency. The
structure was optimized with this frequency constraint and the final design is selected as the central design.
The initial weight of the structure was 13,000 lb. and the final design had a weight of 9833 lb. Figure 3
shows the iteration history for the above optimization problem. Once the central design is selected,
uncertainty is modeled as deviation from the central design. This type of modeling would be suitable when
dealing with designs that have tolerance information.

D-optimal design technique was used to select 512 data points to construct MPA for the response
function. Local TANA2 approximations were constructed using the data points and these were blended
using a blending function to obtain one MPA. Once the approximation is constructed random sampling is
performed in the uncertain space and the maximum and minimum for the function are determined. These
maximum and minimum points are perturbed and new simulation is performed at the perturbed data points.
This additional information is used in constructing a new TANA2 approximation that is used to determine
the lower and upper limit of the response.
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Figure 2. Flexible wing structural model

At every data point, the function value and gradients are estimated using ASTROS. The gradients
are available analytical at every data point. A total of 572 simulations were performed to obtain the
membership function of the response. Each of these simulations is a computationally expensive finite
element analysis. Among these, 512 simulations are performed at each of the data points from the D-
optimal design, 40 simulations were required to construct the TANA2 approximation, used in optimization
to find the maximum and minimum. Finally 20 simulations were performed to obtain the actual function
value at the optimum points for minimum and maximum values.

14000

13000 -

12000

.1M 11000

10000 ---

9000--

8000 !
1 2 3 4 5 6 7 8 9 10 11 12

Iteration Number

Figure 3: Iteration History

These lower and upper limits are obtained at each of the possibility levels to produce the
membership function of the response as shown in Figure 4. The membership function determines the
bounds on the response at various confidence levels. For example, the response value would be equal to -
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0.00153 if the structural parameters were deterministic and assumed the central value. However, the
uncertainty in the input data would result in the bounded response depending on the bounds of input
parameters.

The possibility of failure is equal to the maximum value of the confidence level in the range of
response values considered. For example, from the plot of the membership function of frequency, the
possibility of failure that the frequency would be less than -0.1 is 47%. This is obtained by considering the
interval from -0.1 to the lower limit when the confidence level is 0 and taking the value of the maximum
confidence level for all those values. The possibilistic analysis method is an efficient technique to estimate
the possibility of failure of the response. The efficiency of the method is achieved by using the high
fidelity surrogate models for the response.

Uncertain Variable Lower Limit (in.) Central Value (in.) Upper Limit (in.)

1 0.10 0.130 0.15

2 0.06 0.080 0.10

3 0.05 0.070 0.09

4 0.04 0.056 0.08

5 0.02 0.036 0.05

6 0.01 0.020 0.03

7 0.01 0.020 0.03

8 0.01 0.020 0.03

9 0.01 0.020 0.03

10 0.01 0.020 0.03

11 0.01 0.020 0.03

12 0.01 0.020 0.03

13 0.01 0.020 0.03

14 0.01 0.020 0.03

15 0.02 0.026 0.031

16 0.01 0.015 0.02

17 0.03 0.040 0.05

18 0.01 0.020 0.03

19 0.01 0.020 0.03

20 0.01 0.020 0.03

21 0.01 0.020 0.03

22 0.01 0.020 0.03

23 0.02 0.030 0.04

24 0.02 0.030 0.04

25 0.035 0.045 0.055

26 0.01 0.020 0.03

27 0.01 0.020 0.03

Table 1: Bounds on the Uncertain Structural Parameters
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A value of possibility equal to zero means that there is no possibility and a value of one indicates
maximum possibility. The above membership function describes the relationship between the possibility
level and frequency. The membership function can give information about the possibility for a range of
frequencies. In this technique, the structure can be designed to operate in the range of response values that
satisfy certain confidence level requirements.

Therefore, when designing a structure such as this fighter wing, the designer must decide what level of
confidence has to be achieved for the design. Once that confidence level is decided, the problem boils
down to controlling the various uncertain parameters in order to obtain a required membership function.
These uncertain parameters can be controlled by posing this as an optimization problem where the
objective could be minimization of weight of the structure and the constraint is that the possibility of a
particular value (say frequency less than a certain limiting value) is less than a predetermined level of
confidence. This optimization task would produce a design whose frequency is within the acceptable range
at a particular level of confidence and also the structure would have least weight.

0.

"-0.47
o 

0.40

Response

-0.2 -0.1 0 0.2 0.4

Figure 4: Bounds on Frequency Response

Summary

The uncertainty quantification method presented in this paper aims at reducing or even eliminating
the testing on prototypes during the intermediate stages. These methods can be used to determine the
variance in the response analytically and the design can be updated according to this information. This
reduces the cost and time for military vehicle acquisition considerably. Moreover, these methods can also
be used to develop a targeted testing procedure for the final design prototypes thereby, reducing the
number of actual tests.

In this paper a methodology for dealing with vague information is presented. In the presence of
vague information, usual practice is to assign some distribution information that closely matches the
available information. However, this practice would introduce more uncertainty into the system and the
results obtained can be orders of magnitude away from the actual failure probability.

Therefore, the presented method uses the available information without assuming any additional
information and predicts the possibility distribution for the response. This possibilistic analysis is useful in
the preliminary design stage where very less data is available for the design parameters. The efficiency of
the UQ method is evident when dealing with the implicit response functions that require expensive FEA
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simulations to obtain the function values. Therefore, the use of function approximations is emphasized to
reduce the computational cost involved in the analysis procedure.

In possibility analysis a membership function has to be assigned for the uncertain variable. This
membership function can be constructed when the intervals information at various confidence levels is
known. However, this information is usually unavailable, therefore, a distribution is assumed that best
represents the available data. In this paper, a triangular membership function is assigned to the uncertain
variables because it is assumed that the data is dispersed around a central design. The membership function
of the response depends on the assumption of a distribution for the individual uncertain variables.
Therefore, assumption of an invalid distribution would produce results that do not represent the actual
problem. However, the values of the response at zero percent confidence are not dependent on any kind of
distribution information. Therefore, when there is absolutely no information about the uncertain variables
the analysis is performed at zero percent confidence.

The possibilistic analysis method discussed here would estimate the bounds on the response
subject to uncertain intervals. These bounds give an insight into the problem and they can be used to
design structures that are less sensitive to the uncertainties in the input parameters. These bounds can be
used in an analysis procedure that adjusts the bounds of input parameters to determine a configuration of
these parameters that would result in the narrowest bound on the response. Moreover, the worst-case
bounds on the response can be forced to fall in the safe operating zone to obtain a highly reliable
component or system. These design configurations produce structures that are robust and perform safely in
an uncertain operating environment.
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Paper #26

Discussor's Name: Steve Whittle
Author's Name: Ramana Grandhi

Q: Your presentation concentrated on how input uncertainty propagates through models to produce levels
of uncertainty in the output properties. Equally important are levels of uncertainty in the model itself.
Have you considered/completed model dependability analysis in you research?

A: Uncertainties in simulations come from many sources such as input parameters, finite element models,
type of elements, numerical analyses selected, nonlinear solution techniques chosen, initial conditions,
assumptions in solvers, and soon. This presentation concentrated on input parameters and we are in
preliminary stages of research in model uncertainty and including them. The key factor is how to
characterize model uncertainties and then choosing a proper method for propagation in simulation.


