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1 Introduction

The propagation of sound waves, defined as an oscillatory motion with small amplitude in a
compressible fluid [1], can be described by the linearized Euler equations (LEE), under the as-
sumptions that there is no feedback to the mean-flow and that effects of viscosity and heat
conduction can be neglected.

In the field of Computational Aeroacoustics (CAA), it is widely recognized that the numerical
algorithms applied to solve the governing equations must have sufficiently low numerical disper-
sion and dissipation in order to accurately simulate the propagation of aeroacoustic information.
To this end, higher-order schemes can be used. The Discontinuous Galerkin (DG) [2, 31 method
is an ultimately compact finite-element method which can be applied efficiently on unstructured
meshes, thus allowing geometrically complex problems to be handled. Higher-order (higher
than second-order) accuracy can be obtained relatively easily because of the compactness of
the method, at the penalty, however, of an increasing number of unknowns per element. An
extensive description of the application of the Discontinuous Galerkin method in the field of
CAA is given by Atkins et al. [4, 5, 6, 7].

The results presented in the present paper are obtained with the computer code DIGS3D,

which is based on a numerical algorithm developed to solve the LEE in three dimensions. For
the spatial discretization of the LEE the Quadrature-free Discontinuous Galerkin method has
been applied, while the time integration is performed by a four-step, low-storage Runge-Kutta
algorithm. At present the algorithm is second-order accurate in both space and time. The
numerical algorithm has already been applied to a three-dimensional broadband cavity-noise
prediction problem [8], where it is part of a three-step method. In the three-step method, the
first step provides the time-averaged RANS-solution from which, in the second step, turbulent
aeroacoustic source terms for the LEE are obtained. In the third step DIGS3D is used to simulate
the propagation of the aeroacoustic disturbances produced by the source field.

The work presented in this paper can be regarded as a continuation of the work presented
in [9]. In [9] two verification problems, the convection of a 2D compact acoustic disturbance
and the radiation from a three-dimensional harmonic monopole source, were presented. One of
the conclusions drawn in that paper is that acceleration of the algorithm to relax requirements
on computational effort was needed. Here we present results obtained for the first of the two
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aforementioned verification problems, obtained with a parallelized version of the code. The
algorithm is parallelized employing MPI (Message Passing Interface) and the code is run on a
1024-cPu platform (TERAS [10]). A more thorough description of parallelizing a DG-based CAA-

algorithm, employing mPI, is presented in [111. The main objectives of the work presented in the
present paper are (continuation of) the verification of the numerical algorithm and conducting
a performance test of the parallelized algorithm on TERAS.

The outline of the paper is as follows: In the first section the governing equations, i.e. the
Linearized Euler equations (LEE), are presented. In the second section the Quadrature-free Dis-
continuous Galerkin method is briefly described. The next section describes the convection of a
two-dimensional compact acoustic disturbance in a uniform mean flow. The analytical solution
of the problem is presented and the obtained numerical results are compared with the analytical
solution. Furthermore results of a performance test on TERAS are presented. Subsequently,
concluding remarks and suggestions for further research are given.

2 Linearized Euler Equations

Consider the dimensionless linearized Euler equations (LEE) in conservation form in three spatial
dimensions

L(U) -U+ -FFj(U) = S, U(x,t), (x,t) E fR x (0,T), (1)

where
Fj(U) = Aj(Uo)U, A3 E R5 x I, (2)

with initial and boundary conditions. Here S (El?5 ) is the source term for the LEE, Q E R3 is
an open domain with boundary X2 and t E (0, T) denotes time. The summation convention is
used on the repeated index j, where j = 1,2,3. U = (pt, t,, 14t3,pt)T, where the. components
of the vector denote 'the dimensionless acroacoustic density perturbation, the three velocity
perturbation components and the press're perturbation, respectively. The components of vector
U0 denote the dimensionless quantities related to the mean flow density, the three components
of the mean flow velocity and the mean flow pressure. The matrices Aj are defined as:

Mj1  il ji2 Ji3 0 1
0 M j 0 0 6Ji

A (U0)= 0 0 Mi 0 62i (3)
0 0 0 Mi, 6
0 6il 8j2 853

where A1l, A12, M 3 are the components of the mean flow Mach-number in x, y and z-direction,
respectively, and lij denotes the Kronecker-delta symbol.

3 Quadrature-free Discontinuous Galerkin Method

in this section we briefly describe the Quadrature-free Discontinuous Galerkin spatial discretiza-
tion. In [8] a more detailed description is presented. Throughout this section we have i E [1, Ne],
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k E [0, M] and l E [0, M].
Let us define the solution space V defined on Q, let U E V and let the inner product on V

be defined as:

(u, v) fu(x)v(x)dx, (4)

from which we can define [12] the L2-norm Ilull = Vuu).

The domain fQ is partitioned into non-overlapping elements fli, Q = Ufj. Let Vh C V be
a finite-dimensional subspace, spanned by the linearly independent basis functions bik, and let
Uh E Vh. Uh is obtained by the projection of U onto the subspace Vh = span{bik}:

N. M

Uh = vik(t)bik(X).(5)
i=1 k=O

In the Discontinuous Galerkin formulation the unknown coefficients vik are obtained by solving
the system of equations given by:

(L(Uh), bi) = (S, bi), V(i, ). (6)

Partial integration of Eq.(6) yields:

bit, k (b9b' Ad b* v- + f bikilbik(Ajnj)Vikdr = (bit, S), V(i, k, 1), (7)

where ri = Ofli and n is the unit outward normal to boundary ri.
Closer inspection of both Eq.(6) and Eq.(7) reveals that the solution within an element only

depends on information within that element, i.e. there is no "communication" between elements.
Furthermore the global solution is, in general, discontinuous over an element interface. To
provide the crucial coupling and to handle the discontinuity at element interfaces, the boundary-
normal flux, Fj(Ul,)nj = AjnjUh, is modeled by means of an approximate Riemann flux
Fj(UL, UR)nj; where UL and UR represent Uh on either side of the element interface. For the
present implementation of the method we approximate the Riemann flux by the Lax-Friedrichs

flux, which can be written as:

FR(UL,UR)nJ = {[Fj(UL) + Fj(UR)1nj - a(UR - UL)}, (8)

where n points from element L to element R and a is a positive quantity that is larger in
magnitude than the eigenvalues of the Jacobian of 2 [Fj (UL) + Fj (UR)]nj. -
For a quadrature-free implementation [4] of Eq.(7) the source-term in the LEE (also) has to be

projected onto Vh:
N, Msh = 1:ESktbkX-(9)
i=1 k=O

Since the LEE are linear, Fj(Uh) is expanded in a natural way as can be seen from Eq.(7).
Furthermore, Atkins and Lockard [5] report that for the simulation of the scattering of acoustic

waves (where an assumption of linearity can be made) it is sufficient to represent the mean flow
by a lower-order polynomial to ensure the formal order properties of the method.

Johnson and Pitkdrata [2] prove that when the basis functions are polynomials of degree p, the
order of accuracy is at least p + ½. In most practical cases [4] the order of accuracy is observed
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to be p + 1. With the relation between M, p and the number of space-time dimension d given
by [4]:

M(p,d) =-1 + (p+k), (10)
k=1

this implies that in order to obtain second-order accuracy we must choose p = 1, resulting in
M =3 for d =3.

Eq. (7) is conveniently evaluated through the introduction of computational coordinates. These
coordinates are local to a reference element for which we choose an equal-sided tetrahedron.
Within the reference element we define the basis set, consisting of monomials, as bk E {1, ý, 17, (}.
The time integration is performed by a second-order accurate, four-step, low-storage Runge-
Kutta algorithm [13].

The.Discontinuous Galerkin method, due to its local character, is very well suited for parallel
calculations. The present parallel implementation is based on a domain decomposition of the
unstructured mesh into several blocks where the calculation for each block is performed on a
different processor. The MPI (Message Passing interface) routines are used to communicate data
between processors for the flux calculations at the interfaces of elements belonging to different
partitions. The block partitioning itself, is based on the METIS ([14]) libraries, and is optimized in
order to achieve both a quasi-uniform loading on the processors, and to lower the communication
costs during computation (minimization of the number of interfaces).

4 Convection of a 2D Compact Acoustic Disturbance

4.1 Problem description

In this verification case the LEE (Eqs.(1) to (3)) are solved on a square domain in which a compact
acoustic perturbation is imposed through the initial conditions. The two-dimensional domain
has dimensions x E [-100,100], y E [-100,100] and the acoustic source is initially centered
at x = y = 0. The mean flow is uniform with Mach-number components M1 = M = 0.5
and M2 = 0, there are no sources (S = 0) and the initial condition for the 2D solution vector
U(x,y,t) = ( V],u',t,pt)T is given by:

U(X' ,y0) = x ff(X, Y) I'(11)flyf(x, Y)'
f (x, y)

with
f(x,y) =e-a(x,+), a- = n(2) =0.04. (12)

9
This test case has also been addressed by Atkins and Shu [4]. Together with a vorticity wave it
is furthermore described as part of the ICASE/LaRC Workshop on Benchmark Problems in Com-
putational Aeroacoustics [15]. Note, however, that in the benchmark-case the initial velocities,
ui and v', are taken equal to zero.
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4.2 Analytical solution

The LEE, together with the conditions described above, can be transformed into the wave equa-
tion:

1) D 0 a-.°D2 q V2q=0, with D -Ot- x

Dt2  Dt + M (13)

where q is either one of the primitive variables p', u', v' or p'.
Upon introducing a coordinate system moving with the mean flow: r = t,= x - M t, t7= y,

the wave equation can be written as:

492q •2q= 0 , V ( ,k)T
or 2  

)T. (14)

Next we introduce polar coordinates (r, 0), where ( = r cos(8) and 7 = r sin(8) and assume
that q is independent of 0:

2q (092q lOq, I (15)

Instead of solving Eq.(15) for one of the primitive variables we will solve it for the velocity
potential O(r,t), which also satisfies the wave equation. With u'= 2 and v' - the primitive
variables are related to the velocity potential by

Or r? O€•, • -p',(16)

where u.t is the radial velocity component. The initial conditions can be obtained from these
two relations

4i(r,Y) = u;(r)dr = e-(17)

ar 
2

-(r,= -p'(r, 0)= -e . (1)

The solution of Eq.(15) for q = € with the initial conditions given by Eq.(17) and Eq.(18) can
be obtained conveniently by employing the Hankel transform:00

-r)= fAJo(Ar)l(A, r) dA, (19)

-- - '(A, r) = rJo(Ar)O(r, r)dr, (20)

where Jo is the zeroth-order Bessel function of the first kind. Upon applying the Hankel trans-
form the problem reduces to solving

5-72+ A21 = 0, (21)

with

P (X,0) = E(A), .(A, = F(A), (22)
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where E(A) and F(A) are given by:

E(A) = - 0 rJo(Ar)c-, 2 dr,

F(A) = - f rJo(Ar)e-,, 2 dr. (23)

From Gradshteyn and Ryzhik [16] we obtain

rJo(Ar)e-'2 dr = 1-e 4*. (24)

The solution of Eq.(21) can be written as:

P(A,T) = E(A)cos(A-) + F() sin(Ar). - (25)
A

Using Eq.(19) to transform back from \ to r we obtain for the velocity potential:

0(r,7) =f- { AJ0(Ar)cos(Ar)e•-. dA + f JO(Ar)si:(A r•-& dA}. (26)

The general solution, as function of r and t, finally becomes:

1 00f)a rc 2o.a
p'(rt) = 2- <I AJO(Ar) cos(At)e-4 dA - P (\r) sin(At)e-.dA, (27)

2afo 2. Jo.

'_Mt~ J iV(Ar) sin(At)e-x - A 2Ji(Ar) cos(Ate- . (8
2ar '11 2ao 0

v!(r,-t) --!L- { AJI (Ar) sin(At)e 4adA + 2 A2J1 (Ar) cos(At)e- dA (29)

where
r = /(x - Mt) 2 + y2, (30)

and p' = p'. In the above expressions J1 is the first-order Bessel function of the first kind.

4.3 Numerical result

For a correct implementation of the initial condition we have to project U(x,y,O), given by
Eq.(11), onto the basis functions. The integrations which then have to be performed are not
straightforward. Alternatively, we will approximate the initial solution by a second-order accu-
rate Taylor-series expansion around the centroid of each element as was also done by Atkins and
Shu [4].

In order to perform this 2D calculation with the present 3D method all derivatives in the
z-direction are taken equal to zero. Furthermore symmetry-plane boundary conditions are used
for the upper and lower boundary in the z-direction. On all the other boundaries of the computa-
tional domain characteristic-based non-reflecting boundary conditions are used. Both boundary
conditions are described in [7]. We take for the 2D solution the result in the plane z=0.

The simulations have been carried out on different tetrahedral meshes. The physical domain,
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Q2, is partitioned into Ne identical tetrahedrons obtained by dividing n into equally sized cubes,
which provides us with a background mesh, and then dividing each cube into 12 identical tetra-
hedrons. In table 1, specifications of the different meshes are given. The background mesh
dimensions are given by N;, N. and N,, while np denotes the number of processors used in the
computation. h denotes a characteristic mesh-size, and is given by h = 1 All simulations have
been carried out with a CFL-number of 0.15.

Case 1 N. I Ny I Ni Tetrahedrons faces z=0 0 h np

II 40 40 2 38,400 3,200 :0 2/4/8/16/32
III 80 80 4 307,200 12,800 *

IV 100 100 5 600,000 20,000t t 2/4/8/16/32/64/128
V 120 120 6 1,036,800 28,800 120 64
VI 160 160 8 2,457,600 51,200 128
• result taken from reference [9]
t 2D result taken in z = 1-plane

Table 1: Mesh specifications and number of processors used for the computations for the different
cases

Verification and accuracy
In [9] case IV was already considered with the non-parallel code. The results obtained with the
current version of the code showes no differences with the results obtained with this previous
version of the code.

Fig.(1) presents the results obtained for p/, along the line x = 10 for t = 20, for the cases V and
VI as well as the analytical solution. The location of the disturbance is accurately resolved in
both cases. The magnification of the region -30 < r < -10, presented in Fig.(1.b), shows that
the result obtained for case VI shows a slightly better comparison with the analytical solution,
than the result obtained for case V, as one might have expected.

Fig. (2) presents the results obtained for p!, along the line x = 20 for t = 40, for the cases
IV and VI as well as the analytical solution. The results obtained for case VI show a better
agreement with the analytical solution than those of case IV.

In Figures (1) and (2) the graph of the analytical solution is obtained by approximating the
integrals in Eq.(27) by means of a composite Simpson's rule. The number of quadrature points
is chosen sufficiently high, so that further increasing the number of quadrature points will not
be visible in the figures.

For r = 0 Eq.(27) can be evaluated exactly, without any numerical approximation. For the

pressure perturbation we obtain the analytical solution pY(0,20) = -0.016624864. We denote
the numerical approximation of p'(0, 20), computed on a mesh with characteristic size h, by fih.
In Fig.(3.a) we have plotted e = [• - pY(0, 20)1 vs. h-1 on logaritfific scales. The values of the
characteristic mesh size h related to the various cases are presented in table (1). The results
of case III, V and VI almost lie on a straight line. The result obtained on the coarse mesh of

case II only deviates a little from this line. (Note that the result obtained for case IV is not
taken into consideration, since the result is not measured in the plane z = 0.) The slope of the
line gives us the order of the method in the point (r, t) = (0, 20). The slope suggests 5th-order

accuracy in the specific point (r, t) = (0, 20). In [17] Hu and Atkins present results of a detailed
study of spatially propagating waves in a DO sheme applied to a 1D system of linear hyperbolic
equations. They report that the phase error (of the physical mode) decays like h2P+2 , where p
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Figure 1: Comparison of numerical results, obtained for case V and VI for x = 10 and t = 20,
with the analytical solution p'(r, 20). b: Magnification of the region -30 < r < -10.
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Figure 2: Comparison of numerical results, obtained for case IV and V1 for x = 20 and t = 40,
with the analytical solution p'(r,40). b: Magnification of the region -50 < r < -30.

is the degree of the polynomials which are used as basis functions. They also report that the
global error measure (for the definition see [171) reduces at order 2p + 1. We use basis functions
of degree p = 1 which would result in a decay of the phase error like h4 and a decay of the
global error measure like h3, assuming that the results obtained by Hu and Atkins in ID would

apply to 3D. However, this still does not explain why we observe a decay of the error like h2P- 3 .

Clearly, further research on this topic is necessary.
Assuming that our method is 5th-order accurate in (r, t) = (0,20), we can apply Richard-

son extrapolation ([181) to obtain a prediction of the exact solution. Employing Richardson
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Figure 3: Grid convergence study for the pressure perturbation in (r, t) = (0, 20).

extrapolation we assume that the following holds:

a+ =a+bh5 . (31)

Using the numerical results of cases V and VI we can obtain the coefficients a and b. Coefficient
a gives the prediction of the exact solution p!(0, 20), we obtain a = -0.016616442. The relative
error %oPVo20) is approximately 0.05 %. Fig.(3.b) shows the polynomial of Eq.(31) together
with the numerical results of the different cases.

Speed-up
A performance test has been carried out for case II and IV on TERAS, which is a 1024-cpu
platform ([10]) -consisting of two 512-cpu SGI Origin 3800 systems. It has a peak performance
of 1 TFlops (1012 floating point operations per second), it is fitted with 500Mhz R14000 cpu's
organized in 256 4-cpu nodes and possesses 1 TByte of total memory. The-speed-up is measured
in terms of the ratio of the user CPU-times, where the two processor-job serves as reference. From
Fig.(4.a) it can be seen that near-linear speed-up is obtained for case IV. Slightly superlinear
speed-up is obtained on 4 processors for both case II and IV, which is probably caused by a
more efficient cache performance. Fig.(4.a) shows furthermore that by dividing the domain of
case II over more than 8 processors, the number of elements assigned to each processor becomes
too small and the communication overhead becomes apparent. From Fig.(4.b) we observe that
for case IV we have a near-linear speed-up, up to 64 processors. On 128 processors the relative
speed-up (relative to np = 2) has dropped to 60%.

On 128 processors approximately 8.109 floating point operations were performed per second
(8 Gflops). For the performance test for case IV, the computation involved 1000 time steps.
The computation took less than 8 minutes on 128 processors (elapsed time). TERAS has a
peak-performance of 1 Gflops per processor, for case IV the code was observed to operate, on
average, at 10 % of this peak when up to 8 processors were used. Using increasingly more
processors (more than 8) resulted in a gradual drop in performance to approximately 6% of the
peak-performance, when 128 processors were used, which is thought to be due to the increased
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Figure 4: Speed-up measured for case II (100 time steps) and case IV (1000 time steps) on
Origin 3800. a: Result for case II and IV for up to 32 processors. b: Result for case IV for up
to 128 processors.

communication overhead.

5 Concluding Remarks

The results presented in the present paper are obtained with the computer code DIGS3D, which
is based on a numerical algorithm, developed to solve the Linearized Euler equations (LEE)

in three dimensions. For the spatial discretization of the LEE the Quadrature-free Discontinu-
ous Galerkin method has been applied, while the time integration is performed by a four-step,
low-storage Runge-Kutta algorithm. The algorithm is second-order accurate in both space and
time. The main objectives of the work presented in the present paper are (continuation of) the
verification of the numerical algorithm and conducting a performance test of the parallelized
algorithm on TERAS.

As a verification problem, the convection of a 2D compact acoustic disturbance has been
considered on different meshes employing different numbers of processors on TEFRAS, a 1024-cpu
platform consisting of two 512-cpu SGI Origin 3800 systems. The obtained numerical solutions
show very good agreement with the analytical solution. A grid convergeiice study for the pres-
sure perturbation in the centre of the decayed and convected 2D Gaussian pulse at dimensionless
time t = 20, suggests that the numerical result in that point is 5th-order accurate in the charac-
teristic mesh size. The reason for this unexpected high accuracy, obtained in that specific point
with the second order accurate algorithm, is unknown at present and needs further investigation.

The conducted performance test showes, that for a medium-sized mesh (600,000 elements),
near-linear speed-up is obtained when up to 64 processors are used. Using 128 processors (for
the same problem), showes that a computational speed of approximately 8.109 floating point
operations per second (8 Gflops) is obtained.
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In addition to further verification and validation, future activities will probably include opti-
mization of the algorithm and extension of the algorithm towards higher-order accuracy.
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Reference # of Paper: 24
Discusser's Name: Dr. Bastiaan Oskam
Author's Name: Mr. Carl P. A. Blom
Question:

How great is the computational complexity of the DG method in comparison with the
DRP scheme on the same finite element mesh? Is it larger than a factor of four?
Answer:

That will depend on the actual wave propagation properties of one method in relation
to the other. I can't give a number at this stage because we don't have analytic values for the
dispersion and dissipation errors in three dimensions. (1 also don't know if these numbers are
available for the DRP scheme in three dimensions.) However, on structured meshes the DRP
scheme would be expected to be more efficient.

Discusser's Name: Prof. Ir. Joop Slooff
Author's Name: Mr. Carl P. A. Blom
Question:

Apparently you do not know precisely, on an analytical basis, what the order of
accuracy is of your scheme. You had to do a numerical mesh convergence experiment to find
out. Then, how do you intend to improve the order of accuracy of your method?
Answer:

We did a one dimensional wave propagation analysis that does give us that kind of
information. The one dimensional analysis is on a structured mesh. We do not know if we can
apply the results obtained in one dimension to three dimensional problems. We also don't
know if, and how, it applies to unstructured meshes. Dr Hu [Hu, F. Q., Hussaini, MN Y., and
Raestarinera, P., "An analysis of the discontinuous Galerkin method for wave propagation
problems," Journal of Computational Physics, 141, 1998, pp. 921-946] has presented results of
his one-dimensional analysis of wave propagation and showed very promising results. We also
did this grid study to enable us to compare with analytical results that might be obtained at a
later stage.


