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Abstract

One way to perform CAA simulations is to split the flow field in a steady mean flow and turbulent
and acoustic fluctuations. The small acoustic fluctuations can then be calculated from linearized
Euler equations (LEE). The mean flow can be supplied by the solution of the Reynolds averaged
Navier-Stokes (RANS) equations. Since different numerical requirements exist for the numerical
grids of RANS and LEE simulations, an interpolation procedure between RANS and LEE grids is
necessary. The following paper presents an interpolation procedure between different structured
multi-block grids and its application to RANS/CAA simulations of a generic wing section.

1. Introduction

The most accurate way to calculate the generation and propagation of sound in flows is the solution of the unsteady
conservation laws of mass, momentum, and energy. Since this direct numerical simulation is even for simple flows
an extremely expensive task, a lot of approximative methods have been proposed in order to attack real world
problems. One of them is the splitting of the flow field in mean flow and turbulent and acoustic fluctuations. The
mean flow is approximated by a solution of the Reynolds averaged equations (RANS), the turbulent fluctuations
e.g. by an SNGR model (Stochastic Noise Generation and Radiation) [2,3,4,7], and the acoustic fluctuations by the
solution of the linearized Euler equations (LEE). This approach is utilized in the german SWING project
(Simulation of Wing-flow Noise Generation), which shall provide a general computer code for the calculation of
airframe noise, especially that generated by high lift devices.

Using this RANS-LEE approach, it is generally necessary to use different grids for both calculations. The reason
for this are the different numerical requirements in both cases. E.g. the RANS calculations need very fine grids in
the boundary layers of the body, whereas the LEE require a sufficient fine resolution in the farfield of the body.
Therefore the RANS solution has to be provided on the CAA grid by means of interpolation. The present paper
discusses this transfer of RANS data into the CAA perturbation code in view of robustness, accuracy as well as the
numerical implications on CAA simulations of airframe noise.

This article is structured as follows. First a brief overview of RANS calculations of a generic wing section will be
given. Then the CAA grid and the interpolation procedure between the RANS grid and the CAA grid will be
considered. Finally some results of CAA calculations with a Navier-Stokes and Euler mean flow will be presented.

2. The RANS Calculations

As generic example, the viscous flow around a wing section of an airfoil representative for those at modem civil
aircraft was calculated. The flow solver was the DLR FLOWer code [1,8,9], which solves the compressible
Navier-Stokes equations on a grid consisting of topologically rectangular blocks (structured multi-block grid). The
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free stream Mach number wasMa =0.2, the Reynolds numberRe = 1.6x 106 and angle of attack of a = 7'. As
turbulence model, the k- o model of Wilcox was used.

2.1 The RANS Grid

The RANS grid consists of 12 blocks with a total of about 86000 grid points, cf. Fig. . The topologically
complicated structure of the grid stems from the fact that with the same topology also a wing section with deployed
Fowler flap has to be calculated (as part of a future 3d simulation). It can be seen that a typical RANS grid
becomes very coarse in the far field region. Any calculation of wave propagation would break down there.
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Fig. 1 The RANS grid(detail). (Thick lines are block boundaries)

2.2 The Mean Flow Field

The mean flow field around a wing section at high angle of attack has a strong pressure minimum at the nose of
the profile, cf. Fig.3, which corresponds to high local velocities and gradients of the flow variables. The maximum

Mach number at the nose is about Ma = 0.45 in contrast to a free stream mach number of 0.2. The thin
boundary layer requests a small grid spacing there. In the present case the distance of the first grid line from the

surface was I x 10-' of the chord length. The examined wing section has a blunt trailing edge with a thickness of
about 0.33% of the chord length. This finite trailing edge requests a considerable amount of fine turing of the grid
in order to achieve sufficient convergence of the RANS solution. Besides problems with the turbulence models
there, the main reason for this difficulty is the complex grid topology in the wake of the profile. For comparison
purposes also an Euler calculation was performed which needed a different grid not shown here. -
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-- 3. Interpolation between RANS- and CAA-
-4 -- E. Grid

-3.5 I

-3 3.1 The CAA Grid

-2.5 The CAA grid in the present example consists of 2
-2 blocks with a total of about 18000 grid points, cf Fig.3.

-1.5 •The boundary layers of the profile were resolved by
"approximately 10 grid points with a minimum grid
spacing of 5XlO-6 at the nose of the profile. This

-0.5s- results in an allowable time step of the CAA calculation

0 of the same magnitude. The minimum grid spacing at
0 .- the nose is about the half of the spacing of the RANS

grid there. This small spacing was chosen mainly in
I .order to resolve possible small unsteady flow structures.

x It should be remarked however that the progression of
Fig. 2 The pressure distribution of the mean flow the grid spacing at the nose is larger than the progression

choosen in the RANS grid. The gridspacing in the far
field was chosen such that one retains enough resolution of the evanescent sound waves and is therefore
significantly smaller than in the RANS grid.
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Fig. 3 The CAA grid (2 blocks. Thick lines are block boundaries.)

It should be noted as well, that a considerable coarsening (factor 20) of the CAA-grid normal to the boundary layer
close to the surface will still allow for an adequate representation of essential features of the physics. As will be
seen later, this is a consequence of the fact that the presence of boundary layers has only a small influence on the
scattering problem considered.
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3.2 The Interpolation Procedure

The interpolation procedure between the RANS grid and the CAA grid is complicated by two circumstances. First,
the two grids can be located almost arbitrary in 3d space (The only restriction is, that the CAA grid has to be
enclosed by the RANS grid). This results in an expensive search for appropriate initial conditions for the iterative
determination of the parameters of a point of the CAA grid. The second issue is the very fact that in complicated 3d
calculations, one has to search some million CAA points in some million RANS cells. This poses great demands
upon the speed of the algorithm. Therefore an easy to evaluate, local polynomial approximation was chosen for the
representation of the grid functions.

3.21 The Interpolating Polynomial

The RANS solver FLOWer developed at DLR utilizes a general curvilinear multi-block structure. Every block of
the grid consists of the n, X n2 X n3 points

x(ij,k)= yij, O<i<n 1 -l , O<j<n2 -l , O<k<n 3 -l

Every flow variable in the FLOWer code is defined at these grid nodes. It is convenient to consider the grid
coordinates and every other function defined on the block as function of the grid indices. I.e., we introduce
parameters ( in such a way that e.g.

x(ij,k) = x(ý = i,r = j," = k)

In the following, the symbol f stands for any variable that is defined at the grid nodes.The interpolation problem

can now be formulated as follows
1. Choose an appropriate representation of a function ff(ý,)q, ,) on the block.

2. Determine for a given point y inside the block the values (4, 77, ý) from the vector equation y = x(4, 77, 4).
Since one has to interpolate a vast amount of points (up to some millions in 3d calculations), one needs a fast
interpolation method with acceptable accuracy. This leads to a polynomial interpolation of the function f on every

cell of the block. Therefore, we consider now a cell i < i + 1, j < r/< j + 1, k < " <4 k + I of the block and

introduce local coordinates u = ý - i , v = r7- j, w = - k in this cell. The interpolation problem now boils

down to a polynomial interpolation of a function on a unit cell 0:< u < 1,0!< v < 1,0 < w < 1, where the function
values (and perhaps appropriate derivates of the function) are given at the comers of this unit cell. The most simple
interpolation is the linear one

f (u, v, w) = a. + a1Oou + ao Iov + aoo I w+ al 1 ouv + a1o0 uw + ao0 I vw +a[ 11uvw

The eight coefficients a000 ,9,al I can be determined by the eight function values

f = f(0,O,0),-, ,fI'I = f(1,l,1) at the comers of the cell. Unfortunately the accuracy of this interpolation is
quite poor. An improvement however can be achieved using a higher order polynomial. In this case one needs
additional information from the neighboring cells or from derivatives at the comers of the cell in order to determine
the higher number of coefficients. In order to construct a local approximation the second approach was choosen,
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3.22 Calculation of the Parameters

Once an interpolating polynomial can be constructed for any function '(4:, 77, •), the main problem of the grid to

grid interpolation can be tackled, i.e. the determination of the parameter values (•, q, ") for an arbitrary point y

inside the RANS grid. This can be split into two parts
1. Find the appropriate block of the RANS grid and some initial conditions for the parameter values.
2. Solve the (nonlinear) vector equation y = x(4:, 77, ý) for (ý, 77, ý) using the polynomial approximation above

for every component function of x.
The crucial point in this algorithm is to provide appropriate initial conditions for the parameters. First, y is checked

against the bounding box of a block. Ify is inside the bounding box, initial conditions are searched in every cell of

the block. In order to do this, x(4:, 77, ý) is approximated on every cell by a linear function. Initial values for

(7, ,) can than be found by solution of a simple system of linear equations. This procedure works for most of

the cells of the RANS grid. If however the faces of a cell have strong curvature and/or if the the aspect ratio of the
cells takes very large values this procedure can fail. This can happen especially with cells in the boundary layer at
the nose of the profile. Then, a second pass is started which uses the parameter of successfully found neighboring
points as initial values. If initial conditions are found, a Newton iteration is performed in order to solve
y = x(ý, 77, 4) , which uses the full polynomial approximation of x.

3.23 Treatment of Wall Points

Points at walls can be treated differently from interior ones, since a wall point in the CAA grid has to be one in the
RANS grid representation of the wall too. Therefore, the search for initial conditions can be performed only over
the surfaces of the RANS blocks. The difficulty which arises is that a wall point lies at a surface of a RANS block
and the Newton iteration for the determination of the parameter values may run outside the block which
deterioriates the convergence of the procedure. Now, however, one parameter value is known from the wall
condition and consequently the search can be performed inside the face of the block (and not in the volume of the
wall cell). In this case, the determining vector equation y = x(4,77, ,) has to be replaced by a set of two

equations, since we are searching two parameter values only. If, for example, ý = const. denotes the coordinate

of a wall, ý, 77 are determined such that the difference vector y - x(4, 77) is perpendicular to both surface tangent

vectors Dx(J, 77) and a(, 17). This is equivalent to the condition that ly - x(j, rq)j is minimum. This approach

also solves the problem encountered when small differences between the wall surfaces of both grids exist,
originating from slightly different spline approximations in both cases.
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3.2.4 Accuracy of the Interpolation

In order to check the accuracy of the interpolation, the test function f (x, y) =x2 + y 2 was interpolated from the

RANS grid onto the CAA grid. The relative error ( CcA4 - f AAm ) / mx fCA) is below 0-4 in regions where
strong mean flow gradients are expected, cf. Fig.4. This has proved to be sufficient for the intended purpose. The
error displays characteristic extrema where large jumps in gridspacing on the RANS grid occur or the grid lines
have some kinks which increase the error in the spline approximations. It should however be noted that far away
from the body the RANS solution has almost no gradients anymore and in the vicinity of the body the gridspacing
is very small. This also alleviates accuracy problems of the interpolation.

3.Oxl 0o' 4

2.O10-04
1.O0xl 0.4

00

O.Oxl10+°°

-1.0x10•

X 1

•1.5 -1

Fig. 4 The relative interpolation error on the CAA grid

4. The CAA Calculations

For the solution of the linearized Euler equations the code PIANO was used, which is currently under development
at DLR [5,6]. The LEE solved read in symbolical-notation

P+ vo'Vp+v'Vpo +poV'v+pV'vo =0at

Po -y-+ PoVo .Vv + pov. Vvo + pvo VV =-Vp

-P+Vo0  .Vp+V Vp0 +poV- v+ YpV- vo =0at

Here p and p are the density and pressure disturbance andv is the vector of the disturbance velocity. The
quantities with index 0 are the mean flow values. The equations were brought into dimensionless form with a

reference length L , a reference density *P and a reference velocity a- which was choosen to be the velocity of
sound far away from the body. These equations are solved on a structured multi-block grid, like the one used in
the FLOWer code. The spatial derivatives are approximated by the usual 4"' order DRP-stencils [14] and time
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integration is done by the standard 40' order Runge-Kutta procedure. Inflow and outflow boundary conditions were
used according to [ 14].

4.1 Filtering

Since the utilized DRP-Schemes have no dissipation, an efficient removal of spurious waves, i.e. waves which can
not be resolved on the numerical grid, is necessary. The usual way to do this is to use artificial selective damping
[13]. This approach is quite expensive, since additional terms have to be calculated in the differential equations. A
more convenient way is to apply periodically during the calculation suitable digital filters on the fields [12,15]. In
PIANO, symmetric 6"' and 8"' order filters are implemented. In the present study, the filters were used every
hundred time steps. The 6"' (N = 3) and 8"h (N = 4) order filter are defined as [12]

N

Vi= aoy V,+La V~ + vi;)-j
j=1

N=3 a 0 =0.6875 , a1 =0.46875 , a,=-0.1875 , a 3 =0.03125

N=4 a0 =0.7265625 , a1 =0.4375 , a,=-0.21875 , a 3 =0.0625

a 4 =-0.0078125

where Vf, denotes the filtered quantity and V the unfiltered one. This filter is applied in the computational

(ý, 77, ') -space in the several space dimensions subsequently. No filtering was used in the first N layers normal

to a wall.

4.2 Smoothing Normal to Walls

During the calculations it has been observed that very strong gradients of the flow variables develop in the
immediate vicinity of walls, especially at the leading edge of the wing section, which lead to numerical instability.
Examination of the calculational results revealed that gridpoint fluctuations of the density normal to the wall are the
driving force for those instabilities. Therefore, an ad hoc procedure was applied in order to smooth out those
gridpoint fluctuations, which we call 'diagonal smoothing'. If j denotes the direction normal to the wall and

j = 0 the position of the wall, the diagonal smoothing procedure for a flow quantity is defined as
N

=/i i =a 0y1i, i + 2ak(Yfi-k,j+k + Vi'k,.i+,) j= 0,1,...,N-l
k=l

The coefficients a1 are the same as for the filters above. The value of N = 3 was used in connection with 6th

order filtering and N = 4 with 8h order filtering. This smoothing procedure was not applied normal to the trailing
edge face. In the results presented, all flow quantities were smoothed, although in some calculations it would have
been sufficient to smooth the density alone.
It should be emphasized however, that up to now no mathematical justification can be given for this kind of
smoothing. This is a problem that clearly requests further investigations in the future.

4.3 Pressure Pulse Hitting the Leading Edge

A common benchmark problem for CAA codes is the scattering of a pressure pulse hitting the leading edge of a
wing section. Fig.5 shows the scattering of a pressure pulse located at x = -0.35,y = 0 at time at T = 0 in front

of the profile for the RANS mean flow and 8 h order filtering. It can be seen, that the wave front travels slightly
faster above the upper side of the profile due to the higher velocities of the mean flow there. The most remarkable
phenomenon, which was not observed in scattering investigations using an Euler mean flow, is however the strong
generation of vorticity in the boundary layer at the nose of the profile. This vorticity is convected by the mean flow
along the upper surface of the profile. Fig.6 shows the contour plot of the v-velocity component and the local
direction of the velocity field by means of momentary streamlines of the disturbance velocity. Fig. 7 shows the
corresponding quantities for an Euler mean flow field, where almost no vorticity is generated in the vicinity of the
body.
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Fig. 7 T=1.5, Euler mean flow: v-velocity field with streamlines of the disturbance velocity

A physical explanation for this strong generation of disturbance vorticity in regions where the mean flow field has
vorticity maxima' too can be given if one considers the compressible vorticity transport equation:

D-o_)Vv+(0i.V)v+ 2pV

Dt p

After linearization the first term on the right hand side gives a term consisting of the product of the vorticity of the
mean flow and the divergence o~f the disturbance velocity. Since the mean flow vorticity takes huge values in the
boundary layer this results in a strong source term for the disturbance vorticity if the pressure wave arrives. Similar
vortex structures have been found by Manoha et al. [10] performing a large eddy simulation of the flowfield
around a NACA 0012 airfoil.
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Fig. 8 T=I.5, Pressure on a circle around the profile for different mean flow fields and filters
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In order to compare the influence of the different mean flow fields and two different filters, for T=1.5 the pressure
on a circle (origin (0.5,0.0), radius 0.8) around the profile was plotted, cf. Fig.8. The angle 00 corresponds to the
downstream direction.
It can be seen that the difference between the 6h and the 8•' order filters is much larger than the difference between
RANS- and Euler mean flow. As one would expect, one recognizes that the pressure profile for the 8 d' order filter
has sharper gradients than that of the 6h order filter. The largest difference between the two filters occurs near the
trailing edge of the profile (domain near angle 00), which becomes clear if on considers that there the sharpest
gradients in the disturbance flow field develop. The very small difference between the pressures of the RANS and
Euler mean flow fields indicates that almost no sound is generated by the vortex structures mentioned above and
that the influence of mean flow field wall boundary layers can be neclected in the scattering problem considered.

5. Conclusions

For the solution of the linearized Euler equations with a RANS mean flow field the RANS grid can normally not
be used. Therefore an interpolation procedure for the mean flow field between curvilinear structured multi-block
RANS- and CAA-grids was suggested, which is based on a higher order polynomial approximation of the grid
variables on each cell. The coefficients of the polynomial are determined from the function values and its 2 -

derivatives at the comers of the cell. The 2nd derivatives are determined by one dimensional cubic spline
interpolation along the gridlines. Of crucial importance is the provision of suitable initial conditions for the iterative
determination of the the parameter values of the grid functions.
The interpolation procedure was applied on the scattering problem of a pressure pulse hitting the leading edge of a
wing section at an angle of attack of a = 7'. Remarkable is the strong production of vorticity in the nose region of
the profile. This vorticity is transported by the mean flow along the upper surface of the profile, but obviously does
not produce sound waves, as shows the comparison with calculations using an Euler mean flow. In the scattering
problem considered, the differences in the pressure fields of the RANS and Euler mean flow cases are very small.
The difference between 6 th and 8" order filtering are most pronounced in the wake of the profile, where sharp
gradients evolve which were more intensely smoothed by the 6eh order filter.
An open problem that remains is the strong mathematical justification of the diagonal smoothing procedure, which
had to be applied in immediate vicinity of solid walls, in order to stabilize the calculations.

6. References

[1] Aumann, P.; Bamewitz, H.; Schwarten, H.; Becker, H.; Heinrich, R.; Roll, B.; Galle, M.; Kroll, N.; Gerold, T.;
Schwambom, D.; Franke, M.: "MEGAFLOW: Parallel complete aircraft CFD", Parallel Computing, vol. 27, no. 4,
pp. 415-440, 2001.

[2] Bailly, C.; Juv6, D.: "A stochastic approach to compute subsonic noise using linearized Euler's equations",
AIAA-paper 99-1872, American Institute of Aeronautics and Astronautics, 1999.

[3] Bailly, C.; Lafon, P.; Candelý.: "A stochastic approach to compute noise generation and radiation of free-_
turbulent flows", in 1 st AIAA/CEAS Aeroacoustics Conference, 1995.

[4] Bailly,C.; Lafon, P.; Candel, S.: "Computation of noise generation and propagation for free and confined
turbulent flows", in 2nd AIAA/CEAS Aeroacoustics Conference, 1996.

[5] Grogger, H.A.; Delfs, J.W.; Lauke, T.G.; Lummer, M.; Yin, J.: "Simulation of leading edge noise of airfoils
using CAA based on body fitted grids", presented at the International Congress of Acoustics and Vibration
ICAV7, Garmisch, Germany, submitted to International Journal of Acoustics and Vibration

[6] Grogger, H.A.; Lummer, M.; Lauke,Th.: "Simulation of the Interaction of a Three Dimensional Vortex with
airfoils using CAA", AIAA-Paper No. 2001-2137, (2001)

[7] Kalitzin, N.; Wilde, A.: "Application of the stochastic noise generation and radiation model to trailing edge
noise", in Aeroacoustic Workshop in connection with the German research project SWING - Proceedings (P.
K61tzsch and N. Kalitzin, eds.), (Dresden), TU Dresden, 1999



(SYA) 16-12

[8] Kroll, N.; Rossow, C.-C.; Becker, K.; Thiele, F.: "MEGAFLOW - a numerical flow simulation system", ICAS-
.Paper 98-2.7.4, 1998.

[9] Kroll, N.; Rossow, C.-C.; Becker, K.; Thiele, F.: "The MEGAFLOW project", Aerospace Science and
Technology, vol. 4, no. 4, pp. 223-237, 2000.

[10] Manoha, E.; Delahay, C.; Redonnet, S.; Ben Khelil, S.; Guillen, P.; Sagaut, P.; Mary, I.: "Numerical
prediction of the unsteady flow and radiated noise from a 3D lifting airfoil", NATO RTO-AVT Symposium on
Aging mechanisms and Control, Part A - Development in Computational Aero- and Hydro-Acoustics,
Manchester, UK, 8-11 Oct. 2001.

[11] Press, W.H.; Flannery, B.P.; Teukolksky, S.A.; Vetterling, W.T.: "Numerical Recipes", Cambridge:
Cambridge University Press, 1986.

[12] Shang, J.S.: "High-order compact-difference schemes for time-dependent maxwell equations", Journal of
Computational Physics, vol. 153, pp. 312-333, 1999.

[13] Tam, C.K.W.; Webb, J.C.; Dong, Z.: "A study of the short wave components in computational acoustics",
Journal of Computational Acoustics, vol. 1, pp. 1-30, (1993)

[14] Tam, C.K.W.; Webb, J.C.; "Dispersion-Relation-Preserving Finite Difference Schemes for Computational
Aeroacoustics", Journal of Computational Physics, vol. 107, pp. 262-281, (1993)

[15] Vasilyev, O.V.; Lund, T.S.; Moin, P.: "A general class of commutative Filters for LES in complex
geometries", Journal of Computational Physics, vol. 146, pp. 82-104, 1998.



(SYA) 16-13

Reference # of Paper: 16
Discusser's Name: Prof. J. J. McGuirk
Author's Name: Dr. Markus Lummer
Question:

The RANS solution is converged in the sense that mass and momentum balances on the RAND
cells. Do you check that after interpolation the interpolated mean flow satisfies mass and momentum
balance on the CAA grid? If not, the linearized Euler equations you solve in a discretized sense may
contain artificial diffusive fluxes other than zero on their right hand sides.
Answer:

The balance of the interpolated fluxes is not checked. Since the linearized Euler equations are
solved in nonconservative form, artificial fluxes are always present on the right hand side: but are
assumed to be small. We assume that the modeling error in the RANS calculations is at least one order of
magnitude larger than possible errors introduced by the interpolation.


