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Abstract

Multimodal dialog sysbems research ab the University
of Mlinois seeks to dewelop algorithms and systems
capable of robustly extracting and adapbively com-
bining information about the spesch and gestures of
& nave user in a noisy environment. This paper will
review our recent work in seven fields relabed to mul-
timodal semmantic undersbanding of speech: andiovi-
sual speech recognition, mnltimodal user sbabe recog-
nition, gesbure recognition, face tracking, binanral
hearing, noise-robust and high-performance acoustic
feature design, and recognition of prosody.

1 Introduction

The purpose of this paper is to summarize ongoing
multimodal speech and dialog rerognition research
at the Universiby of Dlinois. A multimodal speech
recognition sysberm can be described in two distinct
stages: (1) robust audiovisual feabure extraction, and
(2) speech and user stabe recognition using dynamic
Bayesian nebworks. Feabures are extracted from au-
diovisual inpub in ordet to optimally represent pho-
nebic, visemic, gesbural, and prosodic information.
Our specific ongoing research projects include bin-
aural hearing (array processing on a mobile plat-
form), biomimetic noise-robust acoustic feature ex-
traction, maximumnm mutual information acoustic fea-
ture design, and face tracking. Cusbomized Dynatmic
Bayesian nebworks have been designed for three dif-
ferent recognition tasks: audiovisual speech recog-
nition using coupled HMMSs, user sbate recognibion
using hierarchical HMMs, and recognition of speak-
ing rabe using hidden-mode explicib-duration acoustic
HhMMs.

Image and Speech Processing research ab the Uni-
versity of Illinois is currently tested in two ongoing
research prototype environments. The first research
probobype environment is an experimentsl computing
facility for teaching children about physics. The sec-
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ond research environment is an antonomous robot,
Iily, who acquires language through the sernantic as-
sociakion of audio, visual, and haphic sensory daba
Pricr to implementation on one or both of these plat-
forms, most of our algerithms are tested using sban-
dard or locally acquired datasets.

2 Pre-Processing

2.1 Binaural Hearing

QOur research on binaural hearing addresses the ex-
traction of noise-robust audio from a two-miaroplhione
array mounted on a physically mobile platform (a
language-learning aubonomous robot). The source
localization algorithm is based on a two channe]
Griffiths Jim beamformer [3] and a new phase un-
wrapping algorithm for accurabe estimabion of time
difference of arrival measures [8]. The new phase un-
wrapping algorithm is trained using many measure-
ments of TDOAs in order to creabe an accurate spa-
tial map of TDOA pabbern as a function of arrival
azimuth and elevation. These can then be used bobh
to cancel inberfering noise and to get a faithful rep-
resentabion of the desired speech signal. Preliminary
results show thab a speech signal can be accurabely
Iocabed in noisy laborabory room within a few mil-
liseconds and with ben degree accuracy at a disbance
of 2-4 mebers (acoustic far field).

In the current implementation, debtection of a
speech signal trigeers physical robakion of the receiver
platform (the robot’s “head”) so that it faces the pri-
mary talker. By physically aligning the “head” of the
robot with the direction of primary source arrival, we
are able to use extremely efficient off-axis cancellation
algorithms for improved SNR [9].

2.2 Acoustic Features

Standard speech recognition feabures (including
MFCC, PLP, and LPCC) result in isolated digit
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Figure 1: WER: isolabed digit recognition in white

noise with two standard feature sets, MFCC and

LPCC, and two novel feature sebs, LPCC with voice
index and with frame index (from [6]}.

recognition error rabes of approximately 60% at 10dB
SNR, and nearly 80% at 0dE SNR. In 1992, Med-
dis and Hewitt proposed a biomimetic method for
recognition of woiced speech in high noise environ-
ments [10]. Meddis and Hewitt proposed filbering
& noisy speech signal into many bands, compubing
the autocorrelation function Ry (r} in each sub-band,
and then estimating the speech auntocorrelation R{r)
by opbimally selecting and adding together the higli-
SNR sub-band aubocorrelations. In our work [6], we
have replaced Meddis and Hewitt’s optimal selecbion
algorithm by an optimal scaling algorithm. Specifi-
cally, we estimabe the sub-band SNR », using a stan-
dard pitch prediction coefficient, ie.

. _ Speedh Energy in Band k _ Ry(To)
*  Tobel Energyin Bandk  Ry(0)

(1)

where Ty is the globally optimum pitch period. The
maximum likelihood estimabe of the noise-free speech
signal antocorrelation is then

A(z) = e Ru(r) (2)

In isolabed digit recognition experiments, the use of
equations 1 and 2 reduced word error rate by more
than a fachor of three in white naoise at 10dB through
-10dB, and by more than a fackor of two in babble
noise ab the same SNRs (Figure 1).

The phonological features implemented atb a speech
landmark influence the acoustic spectrum ab dis-
bances of 50-100ms [, 13]. Complete representabion
of a 100ms spectrogram requires a 120-dimensional

No LM Phone Bigram
Feabures | 35dB | 10dB | 35dB | 10dB
LPCC b6 40 59 16
MFCC 58 42 63 418
M b8 42 62 416
MMIA 50 43 63 19

Teble I: Phonemerecognition carrectness in four con-
ditions. Feabures sdected using a maximum mubual
information criterion (MMIA) provide superior per-
formance in all four conditions.

acousbic feature vecbor. It is not possible to accu-
rabely train observation PDFs of dimension 120 using
existing daba sets, but it is possible to select a sub-
wector using a quantibative optimality criterion. In
our research, we select a 33-dimensional feature sub-
vector from a list of 160 candidabe features in order
to optimize the mutual information between features
and phoneme labels [12]. Optimality is debermined
using a clean speech dababase (TIMIT) with no lan-
guage model, bub the resulting optimality generalizes.
As shown in Table 1, the resulting MMIA (maximum
mutual informabion acoustic) feabure vector ontper-
forms all sbandard feabure vecbors under ab least three
conditions: in quiet and at 10dB SR, without a lan-
guage moded and with an optimized phoneme bigram.
Larger improvements may be obtained by testing the
5-10 best feabure vechars generated during the mubual
informabion search. The best recognition accnracy,
obtained using the feabure set with second-best mu-
tual information, was 62% with no language model
in quiet conditions.

2.3 Face Tracking

Research has shown that facial and vocal tract mo-
tions are highly correlated during speech produc-
tion [20]. Speech recognition using both audio /visual
feabures is shown to be more robust in noisy environ-
ments [5]. Analysis of non-rigid hurnan facial motion
is a key component for acquiring visual features for
andio/ visual speech recognition.

In the past several years, research in our group has
led to a robust 3D facial motion tracking system [16).
A 3D non-rigid facial motion model is manually con-
struched based on piecewise Bezier volume deforma-
tion model (PBVD). It is used to constrain the noisy
low-level optical flow. The tracking is done in a multi-
resolution manner such that higher speed could be
achieved. Tt runs at b fps on an SGI Onyx2 machine.
This tracking algoribhm has been successfully used for
audio-visual speech recognition and bimodal emotion
recognition.
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Figure 2: Demonstration of our face tracking system.

2.4 Gesture Recognition

Hand gesbures are capable of delivering information
not presented in speech [14]. Controlling gesture can
be used to provide commands to the system. Nav-
igation gestures provide information for manipulat-
ing virtual objects, and for selecting point objects or
large regions on thie screen. Conversational gesbures
provide subtle cues to senbence meaning in normal
human interaction. Aubomated hand tracking and
gesbure recognition can help improve the performance
of human-machine inberface.

We have investigaled both appearance-based ges-
ture recognition (using neural network-based pat-
tern recognition techniques) and model-based gesture
recognibion [18, 17]. In model-based recognition, the
configuration of a hand model is first determined by
providing a set of joint angle paramebers. The 2D
projection of this hand model, debtermined by the
translation and orientation of the model relative to
a viewing portal, is compared with the hand image
from input video. Estimabe of the correct input hand
configuration is debermined by the best matching pro-
jection. A complete description of the global hand
position and all finger joint angles requires specifica-
tion of 21 joint angles. Using both known anatom-
ical constraints and PCA to reduce dimensionality,
we can initially reduce the dimensionality of the ges-
tural description fram 21 to 7 independent dimen-
sions while keeping 95% of the information. In this
7-dimensional space, it is possible to define 28 ba-
sis configurations, consisting of the configurations in
which each finger is either fully folded or completely
extended. A close exarmination of the motion trajec-
tories between these basis stabtes shows that nabural
hand articulabions seem to lie largely in the linear
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manifold spanned by pairs of basis states. We be-
lieve that, based on these preliminary results, it will
be possible to map all observed gestures inbo a low-
dimensional gestural manifold, resulbing in efficient
and accurabe gesbure recognition.

3 Dynamic Bayesian Networks

3.1 Lip Reading

The focus of our research in lip reading is a novel ap-
proach to the fusion problem in audio-visual speech
processing and recognition. Our fusion algorithm is
built upon the framework of coupled hidden Markov
models (CHMMs). CHMMs are probabilistic in-
ference graphs that have hidden Markov models
(HMMs) as sub-graphs. Chains in the correspond-
ing inference graph are coupled through matrices of
conditional probabilities modeling temporal depen-
dencies between their hidden state variables. The
coupling probabilities are both cross chain and cross
time Thelater is essential for capburing bemporal in-
fluen ces between chains. In a bimodal speech recog-
nition sysbemn, two-chain CHMMSs are deployed, with
one chain being associated with the acoustic obser-
vations, the other with the visual feabures. Under
this framework, the fusion of the two modalities takes
place during the dassification stage The particular
topology of the CHMM ensures that the learning and
classification are based an the andio and visual do-
maine jointly, while allowing asynchronies between
the two information channels.

In essence, CHMMSs are direcbed graphical models
of stochastic processes and are a special type of Dy-
namic Bayesian Networks (DBNs). The DBNs gen-
eralize the HMMs by representing the hidden sbabes
as sbabe variables, and allow the sbabes to have com-
plex interdependencies. The DEN point of view fa-
cillitates the development of inference algarithms for
the CHMMs. Specifically, two inference algorithms
are proposed in this work. Both of the algorithms are
exact methods. The first is an exbension of the well-
known forward-backward algorithm from the HMM
liberatures. The second is a strabegy of converting
CHMMs to mathematically equivalent HMMs, and
carrying out learning in the transformed models.

The benefits of the proposed fusion scheme are
confirmed by a series of preliminary experiments
oo audio-visual speech recognition. Visual fea-
tures based on lip geometry are used in the exper-
iments. Furthermore, comparing witll an acoustic-
only ASR systemn trained using only the audio chan-
nel of the same dabaset, the bimodal system consis-
tently demonstrabes improved noise robustness across




SNR | 10dB | 20dB | 30dB
A 103 | 4361 | 99.10

¥ 4205 | 1295 | 42.95
A+V (1058 | 7270 | 0971
CHMM | 35.32 | 8658 | 93.32

Table 2: Result of experiments in andiovisual speech
recognition (measured in ¥word accuracy). A indi-
cabes the andio-only sysbermn; V indicabes the visual-
only syskem; A4V indicabes a bimodal sysbem using
early integration; and CHMM indicabes the CHMM-
based system.

2 wide range of SNR lewvels.

3.2 Prosody

Our approach to the recognition of prosody is the
use of a “hidden mode variable” [13] to condition the
explicit duration PDFs of a2 CVDHMM [7]. In our
prototype algorithm, the sbabe space consisbs of par-
allel phonetic sbabe variables (g:) and prosodic sbabe
variables (k). The dwell time of state ¢; is & random
variable d, with PDF depending p{d,|g,k). At the
end of the specified dwell time, the phonetic variable
always changes stabe (no self loops), but the prosodic
stabe variable may or may not change stabe. Thus,
for example, if (k; eslow, medium, fast) represents
speaking rate, it may be reasonable to allow & to
change stabe at any word boundary with a small prob-
ability.

In order to allow efficient experiments, we have
modified HTK to make use of Ferguson’s EM al-
gorithm for explicit-duration HMMs [1, 2. Fergu-
son’s algorithm is an order of magnitude faster than
most alporithms for the explicib-duration HMMs.
The computational complexity of the algorithm is
O(NT(N + T)), where N is the number of stabes,
T is the number of frames in the inputb signal, and
{O({N3T)) is the complexity of an HMM without ex-
plicit duration. The forward algorithm compubes

oi(fj) = P(C,...,0j commences abt +1)
= Z o¢(i)ay
F
P(O,...,0, i ends ab 1)

= Z G-:-—d (i)jj(dli)j:{of—d'fl; - )Ofli)

ﬂ'f(i)

3.3 User State Recognition

Integration of a large number of sources for the pur-
pose of multimodal userstate recognition can be ac-
complished using a hierarchical dynamic Bayesian

Ofice Aothvly
fodati

Figure 3: Architecture for detecting events in the of -
fice scenario

network (figure 3). In a hierarchical DBN, each
modelity (andio, Lip reading, gesture, and prosody)
is modeled using a modality-dependent HMM. Each
modality-dependent HMM is searched in order to
genersbe the N transcriptions that best mabch the
observed data in the given modaliby. The likelihood
of each transcription is then estimabed using a con-
strained forward-backward algorithm, generating the
probability of state residency during every frame.
These probabilities are fed forward to the supervisor
HMM, which integrabes them to debermine a single
transcription of the senbence in order to maximize the
& posteriori transcription probability. By imposing a
prior on the probabiliby distributions learned by the
model for the purpose of increasing conditional en-
tropy, we have demonstrated a 10% incresse in user
sbate classification performance [15, 11].

4 Conclusions

Our research is intended to elucidabe both the the-
oretical and the practical requirements for effective
mulbimodal speech understanding sysbems. The use
of speech in multimodal sysbems will incresse our the-
aretical understanding of the problems of sensor fu-
sion and representations of multimodal signals. In-
creased theoretical undersbanding, in burn, will en-
able us to produce practical results thab can be di-
rectly used in sbabe-of-the-art speech recognition sys-
tems and es part of larger sysbems for advanced
human-machine communicabion.
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