TITLE: Galerkin Method for Solving of Singular Integral Equation of Diffraction Problem

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

To order the complete compilation report, use: ADA413455

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013889 thru ADP013989
Galerkin Method for Solving of Singular Integral Equation of Diffraction Problem*

Smirnov Yu.G., Tsupak A.A.

1 The statement of the diffraction problem

Let $P = \{ x : 0 \leq x_1 \leq a, 0 \leq x_2 \leq b, 0 \leq x_3 \leq c \}$ be a resonator with perfectly conducting boundary. Let Q be a three-dimensional body, located in P. Q is characterized by tensor permittivity ε and constant permeability μ_0. We suppose that components of ε are smooth functions in Q and $\left(\frac{1}{\varepsilon} - \mathbf{I} \right)$ is invertible in Q, $Q \cap \partial P = \emptyset$. Let P/Q be homogeneous and isotropic medium. Incident and diffraction fields depend on time variable as $e^{-j\omega t}$.

We will find electromagnetic diffraction fields E and H, satisfying Maxwell's equations in $P \setminus \partial Q$:

$$\begin{align*}
\text{rot} \mathbf{H} &= -j\omega \mathbf{E} + \mathbf{j}_E^0 \\
\text{rot} \mathbf{E} &= j\omega \mu_0 \mathbf{H} - \mathbf{j}_H^0 .
\end{align*}$$

(1)

The complete field should have continuous tangent components at ∂Q:

$$\left[\mathbf{n} \times \mathbf{E} \right]_{\partial Q} \bigm\vert_{\partial Q} = 0 .$$

(2)

2 Integro-differential equations for the diffraction problem

We will express the solution of the stated problem in terms of vector potentials \mathbf{A}_E and \mathbf{A}_H [4]:

$$\begin{align*}
\mathbf{A}_E &= \int_Q \mathbf{G}_E(x, y) \mathbf{j}_E^0(y) dy, \\
\mathbf{A}_H &= \int_Q \mathbf{G}_H(x, y) \mathbf{j}_H^0(y) dy , \\
\mathbf{E} &= j\omega \mathbf{E}_0 \mathbf{A}_E - \frac{1}{j\omega \varepsilon_0} \text{grad div} \mathbf{A}_E - \text{rot} \mathbf{A}_H , \\
\mathbf{H} &= j\omega \mu_0 \mathbf{A}_H - \frac{1}{j\omega \mu_0} \text{grad div} \mathbf{A}_H + \text{rot} \mathbf{A}_E .
\end{align*}$$

(3)

Here $\mathbf{j}_E^0 = \mathbf{j}_E^0 + \mathbf{j}_E^0$, $\mathbf{j}_H^0 = \mathbf{j}_E^0 + \mathbf{j}_H^0$, ($\mathbf{j}_E^0$, \mathbf{j}_H^0 are polarization currents), $\mathbf{G}_E, \mathbf{G}_H$ are Green functions for Helmholtz equation, conforming to the arbitrary currents $\mathbf{j}_E^0, \mathbf{j}_H^0$.

$\mathbf{G}_E, \mathbf{G}_H$ are known [3] to have the form of diagonal tensors (the components of \mathbf{G}_E are written out below):

$$\begin{align*}
G^1_E &= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{2\pi e_a}{\partial r \gamma \gamma Y} \cos\left(\frac{\pi n}{a} x_1 \right) \sin\left(\frac{\pi n}{b} x_2 \right) \cos\left(\frac{\pi n}{b} y_1 \right) \sin\left(\frac{\pi m}{b} y_2 \right) \left(\text{sh} \gamma x_3 \text{sh} \gamma (c - y_3), x_3 < y_3 \right) \\
&\quad \text{sh} \gamma y_3 \text{sh} \gamma (c - x_3), x_3 > y_3 \\
G^2_E &= \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \frac{2\pi e_a}{\partial r \gamma \gamma Y} \sin\left(\frac{\pi n}{a} x_1 \right) \cos\left(\frac{\pi n}{b} x_2 \right) \sin\left(\frac{\pi n}{b} y_1 \right) \cos\left(\frac{\pi m}{b} y_2 \right) \left(\text{sh} \gamma x_3 \text{sh} \gamma (c - y_3), x_3 < y_3 \right) \\
&\quad \text{sh} \gamma y_3 \text{sh} \gamma (c - x_3), x_3 > y_3 \\
G^3_E &= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\pi e_a}{\partial r \gamma \gamma Y} \sin\left(\frac{\pi n}{a} x_1 \right) \sin\left(\frac{\pi n}{b} x_2 \right) \sin\left(\frac{\pi m}{b} y_1 \right) \cos\left(\frac{\pi m}{b} y_2 \right) \left(\text{ch} \gamma x_3 \text{ch} \gamma (c - y_3), x_3 < y_3 \right) \\
&\quad \text{ch} \gamma y_3 \text{ch} \gamma (c - x_3), x_3 > y_3
\end{align*}$$

*supported by Russian Foundation for Basic Research, grant 01–01–00053
Here \(\gamma = \sqrt{\left(\frac{\pi n}{a}\right)^2 + \left(\frac{\pi m}{b}\right)^2 - k_0^2} \) (the proper branch for square root is chosen as in \([2, \S 2.3]\), \(\epsilon_0 = 1 \) and \(\epsilon_n = 2 \) for \(n = 1, 2, 3, \ldots \)).

We can obtain the following integro-differential equations (under the condition \(\mu = \mu_0 \hat{I} \) in \(P \)):

\[
\mathbf{E}(x) = \mathbf{E}_0(x) + k_0^2 \int_\mathcal{Q} \nabla E \left[\frac{\xi(y)}{\epsilon_0} - \hat{I} \right] \mathbf{E}(y) dy + \nabla \cdot \left(\int_\mathcal{Q} \epsilon(y) \nabla \mathbf{E} \left[\frac{\xi(y)}{\epsilon_0} - \hat{I} \right] \mathbf{E}(y) dy \right),
\]

and we have

\[
\mathbf{H}(x) = \mathbf{H}_0(x) - i\omega \epsilon_0 \hat{I} \left(\int_\mathcal{Q} \epsilon(y) \nabla \cdot \nabla \mathbf{E} \left[\frac{\xi(y)}{\epsilon_0} - \hat{I} \right] \mathbf{E}(y) dy, \ x \in \mathcal{Q} \right).
\]

We can extract singularity of Green function \(\mathcal{G} \). Using Fourier transformation and interpolation polynomials we can obtain:

\[
\mathcal{G}(x, y) = \frac{1}{4\pi|x - y|} \cdot \hat{I} + \text{diag}\{g_1(x, y), g_2(x, y), g_3(x, y)\},
\]

where \(g_k \) are smooth functions.

3 Galerkin method

Let us introduce the following auxiliary function

\[
\mathcal{G}(x, y) = -\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{4}{a b n m} \sin\left(\frac{\pi n}{a} x_1\right) \sin\left(\frac{\pi m}{b} y_1\right) \sin\left(\frac{\pi n}{a} x_2\right) \sin\left(\frac{\pi m}{b} y_2\right) \times \begin{cases} \sinh x_3 \sinh (c - y_3), x_3 < y_3 \\ \sinh y_3 \sinh (c - x_3), x_3 > y_3 \end{cases}
\]

The derivatives of \(\mathcal{G} \) are connected to the derivatives of \(G_k \) through the equalities:

\[
\frac{\partial G_k}{\partial x_i} = \frac{\partial \mathcal{G}}{\partial y_i}, \quad i = 1, 2, 3.
\]

Before describing the method itself we should make some transformations of equation (5). Denoting \(\left(\frac{\xi(y)}{\epsilon(y)} - \hat{I}\right) \) as \(\xi \) and \(\left(\frac{\xi(y)}{\epsilon(y)} - \hat{I}\right) \mathbf{E} \) as \(\mathbf{J} \) we obtain the following equation

\[
A \mathbf{J} := \xi \mathbf{J}(x) - k_0^2 \int_\mathcal{Q} \nabla \mathbf{E} \left[\frac{\xi(y)}{\epsilon(y)} - \hat{I} \right] \mathbf{J}(y) dy - \nabla \cdot \left(\int_\mathcal{Q} \epsilon(y) \nabla \mathbf{E} \left[\frac{\xi(y)}{\epsilon(y)} - \hat{I} \right] \mathbf{J}(y) dy \right) = \mathbf{E}_0(x)
\]

We can write vector equation (8) as a system of three scalar equations:

\[
\sum_{i=1}^{3} \xi_i \mathbf{J}^i(x) - k_0^2 \int_\mathcal{Q} \nabla \mathbf{E}_i \mathbf{J}(y) dy - \nabla \cdot \left(\int_\mathcal{Q} \epsilon(y) \nabla \mathbf{E} \left[\frac{\xi(y)}{\epsilon(y)} - \hat{I} \right] \mathbf{J}(y) dy \right) = \mathbf{E}_0^i(x), \quad l = 1, 2, 3.
\]

We will determine the components of approximate solution \(\mathbf{J} \) in the following way:

\[
\mathbf{J}^1 = \sum_{k=1}^{N} a_k \mathbf{f}_k^1(x), \quad \mathbf{J}^2 = \sum_{k=1}^{N} b_k \mathbf{f}_k^2(x), \quad \mathbf{J}^3 = \sum_{k=1}^{N} c_k \mathbf{f}_k^3(x),
\]

where \(f_k^l \) are basis "hat"-functions dependent essentially on \(x^l \). The explicit form of \(f_k^l \) is given below.

Let \(\Pi \) be a parallelepiped: \(\Pi = \{x : a_1 \leq x^1 \leq b_1, a_2 \leq x^2 \leq b_2, a_3 \leq x^3 \leq c_3 \} \). We will cover \(\Pi \) with smaller parallelepipeds

\[
\Pi_{k_{1m}} = \{x : x_1^{k_{1m}} \leq x^1 \leq x_1^{k_{1m}+1}, x_2^2 \leq x^2 \leq x_2^{k_{1m}+1}, x_3^{k_{1m}} \leq x^3 \leq x_3^{k_{1m}+1}\}
\]

\[
x_1^{k} = a_1 + \frac{a_2 - a_1}{n} k, \quad x_2^{k} = b_1 + \frac{b_2 - b_1}{n} l, \quad x_3^{k} = c_1 + \frac{c_2 - c_1}{m} m;
\]

KIEV, UKRAINE, IX-TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY
where \(k = 1, \ldots, n - 1; \quad l, m = 0, 1, \ldots, \frac{n}{2} - 1. \)

Denoting \((x_k - x_{k-1}) \) as \(h^2 \) we get the formulas for \(f_{klm}^1 \):\[
\begin{align*}
f_{klm}^1 &= \begin{cases}
\frac{x_k - x_{k+1}}{x_k - x_{k-1}}, & \text{if } x \in [x_{k-1}; x_k] \text{ and } x \in \Pi_{klm}^1 \\
\frac{x_k - x_{k+1}}{x_k - x_{k-1}}, & \text{if } x \in [x_k; x_{k+1}] \text{ and } x \in \Pi_{klm}^1 \\
0, & \text{if } x \notin \Pi_{klm}^1
\end{cases}
\end{align*}
\] (12)

or
\[
f_{klm}^2 = \begin{cases} 1 - \frac{1}{h^2} |x - x_k|, & \text{if } x \in \Pi_{klm}^2 \\
0, & \text{if } x \notin \Pi_{klm}^2
\end{cases}
\] (13)

Functions \(f_{klm}^1 \) and \(f_{klm}^2 \) should be determined by similar formulas. Since
\[
f_{klm}^1|_{z \in (x_k, x_{k+1})} = 0, \quad f_{klm}^2|_{z \in (x_k, x_{k+1})} = 0, \quad f_{klm}^3|_{z \in (x_{k-1}, x_k)} = 0,
\] (14)
every component of approximate vector solution vanishes at some side of \(Q \). However the constructed set of basis functions does satisfy the necessary approximation condition.

Introducing total enumeration for basis functions we get
\[
f_{k1}^1, f_{k2}^2, f_{k3}^3; \quad k = 1, \ldots, N,
\]
where \(N = \frac{1}{4} (n^3 - n^2) \).

It is convenient to represent the augmented matrix for determining unknown coefficients \(a_k, b_k, c_k \) in block form:
\[
\begin{pmatrix}
A_{11} & A_{12} & A_{13} & B_1 \\
A_{21} & A_{22} & A_{23} & B_1 \\
A_{31} & A_{32} & A_{33} & B_1
\end{pmatrix}
\] (15)

where columns \(B_k \) and matrices \(A_{kl} \) are determined by formulas:
\[
B_k = (E_k^0, f_k^0);
\] (16)
\[
A_{kl} = (\xi_k f_l^1, f_l^1) - \delta_{kl} k_0^2 \left(\int_Q G_E^k (x, y) f_l^1 (y) dy, f_l^1 (x) \right) - \\
\left(\frac{\partial}{\partial x_k} \int_Q \frac{\partial}{\partial x_l} G_E^k (x, y) f_l^1 (y) dy, f_l^1 (x) \right),
\] (17)

\(k = 1, 2, 3; \quad i = 1, \ldots, N. \) \((f,g)\) determines the scalar product in \(L_2, \) \((f,g) = \int_Q f(x) g(x) dx. \)

Applying the formulas of integration by parts to both internal and external integrals and taking into account (7) and (14) we obtain:
\[
A_{kl} = \int_{n_j^i \cap n_i^j} \xi_k f_l^1 (x) f_l^1 (x) dx - \delta_{kl} k_0^2 \int_{n_j^i \cap n_i^j} G_E^k (x, y) f_l^1 (y) f_l^1 (x) dy dx - \\
\int_{n_i^j \cap n_j^i} G(x, y) \frac{\partial}{\partial x_l} f_l^1 (y) \frac{\partial}{\partial x_k} f_l^1 (x) dy dx.
\] (18)

References

