TITLE: Scattering of Electromagnetic Waves by Homogeneous Dielectric Gratings with Perfectly Conducting Strip
DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:
To order the complete compilation report, use: ADA413455

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013889 thru ADP013989
SCATTERING OF ELECTROMAGNETIC WAVES BY HOMOGENEOUS DIELECTRIC GRATINGS WITH PERFECTLY CONDUCTING STRIP

Tsuneki YAMASAKI, Takashi HINATA, and Toshio HOSONO

Department of Electrical Engineering, College of Sci. and Tech., Nihon University
Tel. +81-3-3259-0771, Fax.+81-3-3259-0783, E-mail: yamasaki@ele.cst.nihon-u.ac.jp

INTRODUCTION

Recently, the refractive index can easily be controlled to make the periodic structures such as optoelectronic devices, photonic bandgap crystals, frequency selective devices, and other applications by the development of manufacturing technology of optical devices. Thus, the scattering and guiding problems of the inhomogeneous gratings have been considerable interest, and many analytical and numerical methods which are applicable to the dielectric gratings having an arbitrarily periodic structures combination of dielectric and metallic materials.

In this paper, we proposed a new method for the scattering of electromagnetic waves by inhomogeneous dielectric gratings with perfectly conducting strip using the combination of improved Fourier series expansion method and point matching method.

METHOD OF ANALYSIS

We consider inhomogeneous dielectric gratings with perfectly conducting strip as shown in Fig.1(a). The grating is uniform in the y-direction and the permittivity \(\varepsilon(x, z) \) with respect to the position \((=w) \) is an arbitrary periodic function of \(z \) with period \(p \). The permeability is assumed to be \(\mu_0 \). The time dependence is \(\exp(-i\omega t) \) and suppressed throughout. In the formulation, the TM wave is discussed. When the TM wave (the magnetic field has only the \(y \)-component) is assumed to be incident from \(x > 0 \) at the angle \(\theta_0 \), the magnetic fields in the regions \(S_1(x \geq 0) \) and \(S_1(x \leq -d) \) are expressed as

\[
S_1(x \geq 0) : \quad H_z^{(1)} = e^{ik_0(z\sin\theta_0 - x\cos\theta_0)} + e^{ik_0(z\sin\theta_0)} \sum_{n=-N}^{N} t_n^{(1)} e^{i(k_n^{(1)}(x + 2\pi n)/p)} ; \quad k_n \equiv \omega \sqrt{\varepsilon_j \mu_0}
\]

\[
S_1(x \leq -d) : \quad H_z^{(3)} = e^{ik_0(z\sin\theta_0)} \sum_{n=-N}^{N} t_n^{(3)} e^{-i(k_n^{(3)}(x + d) - 2\pi n)/p}
\]

\[
k_n^{(1)} \equiv \sqrt{k_0^2 \varepsilon_1 / \varepsilon_0 - \gamma_n^2} ; \quad \gamma_n \equiv k_0 \sin \theta_0 + 2\pi n / p , \quad k_0 \equiv 2\pi / \lambda , \quad j = 1, 3.
\]

where \(t_n^{(1)} \) and \(t_n^{(3)} \) are unknown coefficients to be determined by boundary conditions.

\[H_z \quad \text{or} \quad E_x \bullet \theta_0 \]

Fig.1 Structure of inhomogeneous dielectric grating with perfectly conducting strip.
Main process of our method to treat these problems is as follows (see Fig. 1(b)):

(1) First, the grating layer \((-d < x < 0)\) is approximated by an assembly of \(M\) stratified layer of modulated index profile with step size \(d_0 (\equiv d/M)\) approximated to step index profile \(\varepsilon^{(i)}(z) [\varepsilon(l + 0.5)d_0, z]; \ l = 1 \sim M\), and the magnetic fields are expanded appropriately by a finite Fourier series.

\[
S_{2}(-d < x < 0) \cdot H_{y}^{(2,2)} = \sum_{l=1}^{2N+1} \left[A_{v}^{(i)} e^{i\theta(y + l(2d_0))} + B_{v}^{(i)} e^{i\theta(y + l(d_0))}\right] e^{i\beta_{x}x} e^{\frac{2\pi n_{x} x}{d}}
\]

where \(\beta_{x}\) is the propagation constant in the \(x\)-direction. We get the following eigenvalue equation in regard to \(\beta_{x}\),

\[
\Lambda_{1} U_{1}^{(i)} = \left\{ h_{1}^{(i)} \right\}^{2} \Lambda_{2} U_{2}^{(i)} + \Lambda_{3} \left[\eta_{1}^{(i)} \right], \quad \Lambda_{2} \equiv \left[\zeta_{m}^{(i)} \right], \quad l = 1 \sim M,
\]

where,

\[
U_{l}^{(i)}=\left\{ u_{l+1}^{(i)}, \ldots , u_{l}^{(i)}, \ldots , u_{N}^{(i)} \right\}^{T}, \quad T: \text{transpose},
\]

\[
\zeta_{m}^{(i)} \equiv k^{2} \varepsilon^{(i)}(z) - \gamma_{n,m}^{(i)} + \frac{2\pi (n - m)}{p}, \quad \gamma_{n,m}^{(i)} \equiv (k, \sin \theta_{0} + 2\pi n/p),
\]

\[
\eta_{m}^{(i)} \equiv \frac{1}{p} \int_{-d_0}^{d_0} \left\{ \varepsilon^{(i)}(z) \right\} e^{2\pi (n - m)z/p} dz, \quad m, n = -N, \ldots , 0, \ldots , N.
\]

For the TM case, the permittivity profile approximated by a Fourier series of \(N_f\) terms and \(N_f\) is related to the modal truncation number \(N (N = 1.5N_f)\).

(2) Second, the strip region \((j < l < j + 1)\), see Fig 1(b), we obtain the matrix form combination of metallic region \(C\) and the dielectric region \(\bar{C}\) using boundary condition at the matching points \(z_{k} (= pk/(2N + 1), k = 0 \sim 2N)\) on \(x = -l - d_0 (l = j)\). Boundary condition are as follows:

\[
z_{j} \in C: E_{j}^{(2; j)} = E_{j}^{(2; j + 1)} = 0 = \sum_{v} \left[h_{v}^{(j)} \left(A_{v}^{(i)} e^{i\theta(y + l(2d_0))} - B_{v}^{(i)} \right) \right], \quad \sum_{n=-N}^{N} u_{v,n}^{(j)} e^{in\theta_{0}} = 0
\]

\[
z_{j} \in \bar{C}: [H_{j}^{(2; j)} = H_{j}^{(2; j + 1)}]
\]

\[
\sum_{v} \left[A_{v}^{(j)} e^{i\theta(y + l(2d_0))} + B_{v}^{(j)} \right], \quad \sum_{n=-N}^{N} u_{v,n}^{(j)} e^{in\theta_{0}} = \sum_{v} \left[A_{v}^{(j + 1)} e^{i\theta(y + l(2d_0))} + B_{v}^{(j + 1)} e^{i\theta(y + l(d_0))}\right], \quad \sum_{n=-N}^{N} u_{v,n}^{(j + 1)} e^{in\theta_{0}} = 0
\]

\[
z_{j} \in \bar{C}: E_{j}^{(2; j)} = E_{j}^{(2; j + 1)}
\]

In the Eq.(8), the boundary condition at \(E_{2; j}^{(2,2)} = E_{2; j + 1}^{(2,2)}\), it is satisfied in all matching points. Therefore, rearranging after multiplying both sides \(\varepsilon_{j}(z) \cdot \varepsilon_{j+1}(z)\) in Eq.(8) by using the orthogonality properties of \(\{e^{2\pi n z/p}\}\), we get following equation.

\[
\sum_{v} \left[h_{v}^{(j)} \left(A_{v}^{(j)} e^{i\theta(y + l(2d_0))} - B_{v}^{(j)} \right) \right] \phi_{n,v}^{(j)} = \sum_{v} \left[h_{v}^{(j + 1)} \left(A_{v}^{(j + 1)} e^{i\theta(y + l(2d_0))} - B_{v}^{(j + 1)} e^{i\theta(y + l(d_0))}\right) \right] \psi_{n,v}^{(j + 1)},
\]

where

\[
\phi_{n,v}^{(j)} \equiv \sum_{n=-N}^{N} u_{v,n}^{(j)} h_{n,m}^{(j)}, \quad \psi_{n,v}^{(j + 1)} \equiv \sum_{n=-N}^{N} u_{v,n}^{(j + 1)} \eta_{n,m}^{(j)}, \quad n = -N, \ldots , 0, \ldots , N.
\]

By using matrix algebra in Eq.(9), we get following matrix form.

\[
\Phi^{(j)} C^{(j)} [D^{(j)} A^{(j)} - B^{(j)}] = \Psi^{(j + 1)} C^{(j + 1)} [A^{(j + 1)} - D^{(j + 1)} B^{(j + 1)}],
\]

where \(\Phi^{(j)} \equiv \left[\phi_{n,v}^{(j)} \right], \Psi^{(j + 1)} \equiv \left[\psi_{n,v}^{(j + 1)} \right], C^{(j)} \equiv \left[h_{n,m}^{(j)} \right], C^{(j + 1)} \equiv \left[h_{n,m}^{(j + 1)} \right], D^{(j)} \equiv \left[e^{i\theta(y + l(2d_0))} \right], \delta_{(n+N+1),z}, \delta_{(n+N),z}, \delta_{(n+N+1),z}.
Kronecker's delta. We get following matrix form combined with Eq.(6) and Eq.(7).

\[H^{(J)} [D^{(J)} A^{(J)} + \mathbf{D}^{(J)} B^{(J)}] = H^{(J)} [A^{(J)} + D^{(J)} B^{(J)}] \]

\[H^{(J)} = \begin{pmatrix} e^{i\theta_{1k}} & e^{i\theta_{2k}} & \cdots & e^{i\theta_{Nk}} \\ e^{i\theta_{1k+1}} & e^{i\theta_{2k+1}} & \cdots & e^{i\theta_{Nk+1}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{i\theta_{1k+N-1}} & e^{i\theta_{2k+N-1}} & \cdots & e^{i\theta_{Nk+N-1}} \end{pmatrix} \]

\[z_k \in \mathbb{C}, \quad \mathbf{U}^{(J)} = \begin{pmatrix} D^{(J)} A^{(J)} & D^{(J)} B^{(J)} \end{pmatrix} \]

\[H^{(J+1)} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e^{i\theta_{1k}} & e^{i\theta_{2k}} & \cdots & e^{i\theta_{Nk}} \end{pmatrix} \]

(3) Finally, we obtain the relationship between \(A^{(J)} \), \(B^{(J)} \) and \(A^{(M)} \), \(B^{(M)} \).

\[\begin{pmatrix} A^{(J)} \\ B^{(J)} \end{pmatrix} = \begin{pmatrix} S_1^{(J)} & S_2^{(J)} \\ S_3^{(J)} & S_4^{(J)} \end{pmatrix} \begin{pmatrix} S_1^{(M)} & S_2^{(M)} \\ S_3^{(M)} & S_4^{(M)} \end{pmatrix} \begin{pmatrix} A^{(M)} \\ B^{(M)} \end{pmatrix} = \begin{pmatrix} S_1 & S_2 \\ S_3 & S_4 \end{pmatrix} \begin{pmatrix} A^{(M)} \\ B^{(M)} \end{pmatrix} \]

\[A^{(J)} = \begin{pmatrix} S_1^{(J)} & S_2^{(J)} \\ S_3^{(J)} & S_4^{(J)} \end{pmatrix} \begin{pmatrix} S_1^{(M)} & S_2^{(M)} \\ S_3^{(M)} & S_4^{(M)} \end{pmatrix} \]

where \(I \neq j \) \(S_{ik}^{(J)} = \left[\begin{pmatrix} f_{ik}^{(J)} \end{pmatrix} \right] \) \(k = 1 \sim N, \ i = 1 \sim M \).

\[\begin{pmatrix} S_1^{(J)} \\ S_2^{(J)} \end{pmatrix} = \begin{pmatrix} S_1^{(J)} \\ S_2^{(J)} \end{pmatrix} = \begin{pmatrix} S_1^{(M)} & S_2^{(M)} \\ S_3^{(M)} & S_4^{(M)} \end{pmatrix} \begin{pmatrix} A^{(M)} \\ B^{(M)} \end{pmatrix} \]

(13) The mode power transmission coefficients \(T_n^{(TM)} \) is given by

\[|T_n^{(TM)}|^2 = \varepsilon \text{Re} \left\{ k_n^{(H)} \right\} \left(\frac{i_n^{(J)}}{\varepsilon_n^{(J)}} \right) \]

CONCLUSION

In this paper, we have proposed a new method for the scattering of electromagnetic waves by inhomogeneous dielectric gratings with perfectly conducting strip using the combination of improved Fourier series expansion method and point matching method.

REFERENCES