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1 Introduction
The classical perceptron proposed by Rosenblatt [22] as a simplified model of a neuron computes a
weighted sum of its inputs and after comparing it with a threshold, applies an activation function
representing a rate of neuron firing. To model this rate, Rosenblatt used the Heaviside discontinu-
ous threshold function, which still is, together with its various continuous approximations, the most
widespread type of activation used in neurocomputing. Formally, a perceptron with the Heaviside
activation function computes a characteristic function of a half-space of 7Zd, which is for practical
reasons (all inputs are bounded) restricted to a box, usually [0, 1 ]d. Thus theoretical study of per-
ceptron networks leads to various questions concerning approximation of functions by a special class
of plane waves formed by linear combinations of characteristic functions of half-spaces (correspond-
ing to the simplest model of perceptron network called the one-hidden-layer network with a linear
output unit).

Although Rosenblatt's model was inspired biologically, plane waves (sometimes called ridge func-
tions) have been studied for a long time by mathematicians motivated by various problems from
physics. In contrast to integration theory, where functions are approximated by linear combinations
of characteristic functions of boxes (simple functions), the theory of perceptron networks studies
approximation of multivariable functions by linear combinations of characteristic functions of half-
spaces. Expressions in terms of such functions exhibit the strength and weakness of plane waves
methods described by Courant and Hilbert [4], page 676: "But always the use of plane waves fails to
exhibit clearly the domains of dependence and the role of characteristics. This shortcoming, however,
is compensated by the elegance of explicit results."

In this paper we survey our recent results on properties of approximation by linear combinations
of characteristic functions of half-spaces. We focus on existence of best approximation, impossibility
of choosing among best approximations a continuous one, estimates of rates of approximation by
linear combinations of n characteristic functions of half-spaces and integral representation as a linear
combination of a continuum of half-spaces.

This work was partially supported by GA (CR 201/99/0092 and 201/02/0428.

454



Approximation by perceptron networks 455

2 Preliminaries
A perceptron with an activation function 0 :1? -: 1? (where RZ denotes the set of real numbers)
computes real-valued functions on RTd X 7 ?d+i of the form O(v x + b), where x E RZd is an input
vector, v E R•d is an input weight vector and b E 7R is a bias.

The most common activation functions are sigmoidals, i.e., functions with an ess-shaped graph.
Both continuous and discontinuous sigmoidals are used. Here, we study networks based on the
discontinuous Heaviside function V defined by 25(t) = 0 for t < 0 and 0(t) = 1 for t > 0. Let Hd
denote the set of functions on [0, 1]d computable by Heaviside perceptrons, i.e.,

Hd = {f: [0, 1 ]d _ R I f(x) = V(v. x +b),v E d, b G R?}.

Notice that Hd is the set of characteristic functions of half-spaces of Rd restricted to [0, 1 ]d.
For all positive integers d, Hd is compact in (Lp([0, I]d), 11.1ll) with p E [1, oo) (see, e.g., [8]). This

can be verified easily once the set Hd is reparameterized by elements of the unit sphere Sd in .Jd+1.
Indeed, a function V (v -x + b), with a non-zero vector (v1,... , Vd, b) E Zd+l, is equal to V(Xr.x +b),

where (01,..., ,Vd, b) E Sd is obtained from (vi,..., Vd, b) E Rd+1 by normalization.
The simplest type of multilayer feedforward network has one hidden layer and one linear output.

Such networks with Heaviside perceptrons in the hidden layer compute functions of the form
n

Zwi •(v x + b),
ji1

where n is the number of hidden units, wi E 7R are output weights and vi E ld and bi E 7R are input
weights and biases, respectively. The set of all such functions is the set of all linear combinations of

n elements of Hd and is denoted by span7 2Hd.
For all positive integers d, UnE2 r+spannHd (where AK+ denotes the set of all positive integers) is

dense in (C([0, 1]d), 11.I]C), the linear space of all continuous functions on [0, 1]d with the supremum
norm, as well as in (£p([0, i]d), 11.11p) with p E [1, co] (see, e.g., [5, 9]).

3 Existence of a best approximation
A subset M of a normed linear space (X, 11.11) is called proximinal if for every f E X the distance

Ilf- MII = infgcM Iif- gil is achieved for some element of M, i.e., Iif- Mll = mingcM Iif- gll (see,
e.g., [23]). Clearly, a proximinal subset must be closed.

A sufficient condition for proximinality of a subset M of a normed linear space (X, 11.11) is

compactness or bounded compactness. However, by extending Hd into spannHd for any positive
integer n we lose compactness. Nevertheless compactness can be replaced by a weaker property
that requires only those sequences that "minimize" a distance from M of an element of X to have

convergent subsequences. More precisely, a subset M of a normed linear space (X, 11.11) is called
approximatively compact if for each f E X and any sequence {gi : i E Kr+}j M such that

limi_. If - gill = If - MI1, there exists g E M such that {gi :i E AP+} converges subsequentially
to g (see, e.g., [23], p. 368). The following theorem is from [16].

Theorem 3.1 For all n, d positive integers, spannHd is an approximatively compact subset of

(Tp([o, 1]d, b o.1ap) with p E [1, of) n
The proof is based on an argument showing that any sequence of elements of spannHd has a
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subsequence that either converges to an element of spanHd or to a Dirac delta distribution, and
the latter case cannot occur when such a sequence "minimizes" a distance from some function inIc P([0, 1]d)

It follows directly from the definitions that each approximatively compact subset is proximinal.

Corollary 3.2 For all n, d positive integers, span,,Hd is a proximinal subset of (CP([0, 1]d), II.ltp)
with p E [1, 0o).

Thus, for any fixed number n, a function in C P([0, 1]d) has a best approximation among functions
computable by a linear combination of n characteristic functions of half-spaces.

4 Uniqueness and continuity of a best approximation

Let M be a subset of a normed linear space (X, 11.11) and let P(M) denote the set of all subsets of
M. The set-valued mapping PM : X -* P(M) defined by PM(f) = {g E M: Iif - gil = Iif - MIll
is called the metric projection of X onto M and PAM(f) is called the projection off onto M.

Let F: X --* P(M) be a set-valued mapping. A selection from F is a mapping 0: X -* M such
that for all f E X, 0(f) E F(f). A mapping 0 : X -- M is called a best approximation operator
from X to M if it is a selection from PM.

When M is proximinal, then PM(f) is non-empty for all f E X and so there exists a best
approximation mapping from X to M. The best approximation need not be unique. When it is
unique, M is called a Chebyshev set (or "unicity" set). Thus M is Chebyshev if for all f E X the
projection PM(f) is a singleton.

Recall that a normed linear space (X, 11.11) is called strictly convex (also called "rotund") if for
all f : g in X with If 11 = ]]gi] = 1 we have 11(f+g)/211 < 1. It is well known that for allp E (1, oo),
(!Cp([0, 1]d), 11.11p) is strictly convex.

The following theorem from [13] implies for p in the open interval (1, no) that if among best
approximations to spanlHd (the existence of which is guaranteed by Corollary 3.2) there is a con-
tinuous one, then span, Hd must be a Chebyshev set.

Theorem 4.1 In a strictly convex normed linear space, any subset with a continuous selection
from its metric projection is Chebyshev.

We shall combine this theorem with the following geometric characterization of Chebyshev sets
with a continuous best approximation from [24].

Theorem 4.2 In a Banach space with strictly convex dual, every Chebyshev subset with continuous
metric projection is convex.

It is well known that Cp'-spaces with p E (1, no) satisfy the assumptions of this theorem (since
the dual of p is Cq where 1/p + 1/q = 1 and q E (1, no)) (see, e.g., [7], p. 160). Hence, to show the
non-existence of a continuous selection, it is sufficient to verify that span, Hd is not convex.

Proposition 4.3 For all n, d positive integers, span,,Hd is not convex.

Indeed, consider 2n parallel half-spaces with the characteristic functions gi(x) = 19(v -x + bi),
where 0 > b1 > ... > b2 , > -1 and v = (1,0,'... ,0) E 1-d. Then i gi is a convex combination

of two elements of span,,Hd, I gi and -•i=,+1 gi, but it is not in span,,Hd, since its restriction
to the one-dimensional set {(t, 0,... ,0) E lZd : t E [0, 1]} has 2n discontinuities.

Summarizing results of this section and the previous one, we get the following corollary.
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Corollary 4.4 In (p([0, 1]d), 11.11p) with p e (1, oc) for all n, d positive integers there exists a best
approximation mapping from £P([0, 1]d) to spannHd, but no such mapping is continuous.

Thus convenient properties of projection operators such as uniqueness and continuity are not
satisfied by spannHd. These properties would allow one to estimate worst-case errors using methods
of algebraic topology (see, e.g., [6]). In linear approximation theory, application of such methods
shows that some sets of functions defined by smoothness conditions exhibit the curse of dimension-
ality: the approximants converge at rate 0(1// n), where d is the number of variables and n is the
dimension of the approximating linear space (see, e.g., [20]). Our results show that these arguments
are not applicable to approximation by spannHd.

5 Rates of approximation

Let (X, 11.11) be a normed linear space and G be its subset, then G-variation (variation with respect
to G) is defined as the Minkowski functional of the set cl conv (G U -G), i.e.,

If JIG = inf{c E R+: f/c E clconv (G U -G)}.

Variation with respect to G is a norm on the subspace {f E X I f I1G < 0019 X. The closure in
its definition depends on the topology induced on X by the norm [[.1[. When X is finite-dimensional,
G-variation does not depend on the choice of a norm on X, since all norms on a finite-dimensional
space are topologically equivalent.

Variation with respect to G has been introduced in [17] as an extension of the concept from [1]
of Hd-variation called variation with respect to half-spaces. For functions of one variable, variation
with respect to half-spaces coincides, up to a constant, with the notion of total variation studied in
integration theory (see [1]). For G countable orthonormal, it coincides with 1-norm with respect to
G (see [18]).

The following theorem from [17] is a reformulation of Maurey-Jones-Barron Theorem (see [2],
[10], [21]) on estimates of rates of approximation of the order of 0(_1/V/n).

Theorem 5.1 Let (X, 11.]]) be a Hilbert space, G be its subset and SG = supgeG ]ugh. Then for every
f E X and for every positive integer n,

if - spannGI < (slfI1c)2 -f 1f12

Corollary 5.2 For all positive integers d, n and for every f E (£ 2 ([0, 1]d, 11.112),

If - spanHd 2 < 112

Thus worst-case error in approximation of functions from the unit ball in Hd-variation by linear

combinations of characteristic functions of n half-spaces of [0, 1]d is at most 1/vy'-. Estimates derived
from Theorem 5.1 are sometimes called "dimension-independent", which is misleading since with
increasing number of variables, the condition of being in the unit ball in G-variation becomes
more and more constraining. See [19] for examples of smooth functions with Hd-variation growing
exponentially with the number of variables d. However, such exponentially growing lower bounds
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on variation with respect to half-spaces are merely lower bounds on upper bounds on rates of
approximation by spannHd, they do not prove that such functions cannot be approximated with
faster rates than IlfJIHd/Vfn. Finding whether these exponentially large upper bounds are tight
seems to be a difficult task related to some open problems in the theory of complexity of Boolean
circuits.

Some insight into behavior of Hd-variation gives its geometric characterization derived in [19]
using the Hahn-Banach Theorem.

Theorem 5.3 Let (X, 11.11) be a Hilbert space and G be its nonempty subset. Then for every f E X,

If JIG = SUhES Ifhl where S = {h E X - G l : Ilhil = 11.Ilfll = S~h•Ssup Ig"- hl'

gEG

Thus functions that are "almost orthogonal" to Hd (i.e., have small inner products with char-
acteristic functions of half-spaces) have large Hd-variation.

6 Integral representation

The following theorem from [14] shows that a smooth real-valued function on Tzd with compact
support can be represented as an integral combination of characteristic functions of half-spaces. By
Ha~b is denoted the half-space {x : e x + b < 0}.

Theorem 6.1 Let d be a positive integer and let f : jZd -- 1? be compactly supported and d+2-times
continuously differentiable. Then

Ax) = I w1 (e, b)t9(e . x + b)dedb,

where for d odd

wf(e,b) = ad J !kI f(y)dy,
e b

kd = (d + 1)/2, and ad is a constant independent of f, while for d even,

wf(e, b) = ad JH A kdf(y)a(e, y + b)dy,

where a(t) = -t log ItI + t for t 5 0 and a(O) = 0, kd = (d + 2)/2, and ad is a constant independent
off.

The assumption that f is compactly supported can be replaced by the weaker assumption that f
vanishes sufficiently rapidly at infinity. The integral representation also applies to certain nonsmooth
functions that generate tempered distributions.

By an approach reminiscent of Radon transform but based directly on distributional techniques
from Courant and Hilbert [4], it was shown in [11] that if f is compactly supported function on lzd

with continuous d-th order partial derivatives, where d is odd, then f can be represented as

f~x) = ISd- iX R vf(e, b)79(e. x + b)dedb,
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where vf = ad fH.,, (Ded)f)(y)dy, ad = ()k1(1/2)(27r)-d for d = 2k+ 1, Ded)f is the directional
derivative of f in the direction e iterated d times, de is the (d - 1)-dimensional volume element on
Sd-i, and dy is likewise on a hyperplane. Although the coefficients vf are obtained by integration
over hyperplanes, while the wf arise from integration over half-spaces, these coefficients can be
shown to coincide by an application of the Divergence Theorem [3] p.4 2 3 to the half-spaces Hj,.
Theorem 6.1 extends the representation of [11] to even values for d and target functions f which
are not compactly supported but which decrease sufficiently rapidly at infinity.

For w E L,(Sd-1 x 1R) and f E D(Z d) define

TH(w)(x) = [ w(e, b)V(e x + b)dedb,

SH(f)(e, b) = wj(e, b).

Theorem 6.1 shows that for each f : VD(7d), TH(SH(f)) = f. This theorem can be also used to
estimate variation with respect to half-spaces by the Li-norm of the weighting function wf - vf. It
is shown in [11] that for any f to which the above representation applies,

If IIHd• J-- Iwf(e,b)Idedb.

Combining this upper bound on Hd-variation with Corollary 5.2, we get a smoothness condition
that defines sets of functions that can be approximated by spannHd with rates of the order of 1/V#n.
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