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Zeros of the hypergeometric polynomial F(-rn, b; c; z)
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Abstract

Our interest lies in describing the zero behaviour of Gauss hypergeometric polynomials
F(-n, b; c; z) where b and c are arbitrary parameters. In general, this problem has not
been solved and even when b and c are both real, the only cases that have been fully
analysed impose additional restrictions on b and c. We review recent results that have
been proved for the zeros of several classes of hypergeometric polynomials F(-n, b; c; z)
where b and c are real. We show that the number of real zeros of F(-n, b; c; z) for
arbitrary real values of the parameters b and c, as well as the intervals in which these
zeros (if any) lie, can be deduced from corresponding results for Jacobi polynomials.

1 Introduction
The Gauss hypergeometric function, or 2 F1 , is defined by

F(a, b; c; z) = I + E -(a kZb < Z,

k=1 (c)k k! Izi K 1,

where a, b and c are complex parameters and

(CI)k = a(a + 1)... (a + k - 1) = F(a + k)/F(a)

is Pochhammer's symbol. When a = -n is a negative integer, the series terminates and

reduces to a polynomial of degree n, called a hypergeometric polynomial. Our focus lies
in the location of the zeros F(-n, b; c; z) for real values of b and c.

Hypergeometric polynomials are connected with several different types of orthogonal
polynomials, notably Chebyshev, Legendre, Gegenbauer and Jacobi polynomials. In the
cases of Chebyshev and Legendre polynomials, the connection demands fixed special
values of the parameters b and c, namely, (cf. [1], p.561)

F -n,n;1I; z) Tn(1 - 2z)

and
F (-n, n + 1; 1; z) = Pn(1 - 2z),

*Research of the first author is supported by the John Knopfmacher Centre for Applicable Analysis

and Number Theory, University of the Witwatersrand.
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respectively. However, in the cases of Gegenbauer and Jacobi polynomials, we have

F (-nn + 2A; A + 2; Z) (2 A)nn C( - 2z) (1.1)

and

F(-n, +a 3+ +1 n; a+ 1; z) = ( -2z), (1.2)
(a +1)n

respectively. Since the zeros of orthogonal polynomials are well understood, we expect
the connections (1.1) and (1.2) to be very useful in analysing the zeros of F(-n, b; c; z).
Conversely, if the zeros of F(-n, b; c; z) are known, this leads to new information about
the zero distribution of Gegenbauer or Jacobi polynomials for values of their parameters
that lie outside the range of orthogonality of these polynomials.

This paper is organized as follows. In Section 2 we give a self-contained review of
recent results regarding the zeros of several special classes of hypergeometric polynomials.
Section 3 contains results originally due to Klein [9] which detail the numbers and
location of real zeros of F(-n, b; c; z) for arbitrary real values of b and c. We provide
simple proofs using results proved in [13].

2 Zeros of special classes of hypergeometric polynomials

We begin with a few general remarks. Since we shall assume throughout our discus-
sion that b and c are real parameters, we know that all zeros of F(-n, b; c; z) must
occur in complex conjugate pairs. In particular, if n is odd, F must always have at
least one real zero. Further, if b = -m where m < n, m E N, F(-n, b; c; z) reduces
to a polynomial of degree m. However, since we are interested in the behaviour of the
zeros of F(-n, b; c; z) as b and/or c vary through real values, we shall adopt the con-
vention that F(-n, -m; c; z) = limb_._, F(-n, b; c; z). This ensures that the zeros of
F vary continuously with b and c. Note also that F(-n, b; c; z) is not defined when
c = 0, -1,..., -n + 1. Regarding the multiplicity of zeros, a hypergeometric function
w - F(a, b; c; z) satisfies the differential equation

z(1 - z)w" + [c - (a + b + 1)z] w' - abw = 0,

so if w(zo) = w'(zo) = 0 at some point z0 $ 0 or 1, it would follow that w 0. Thus
multiple zeros of F(-n, b; c; z) can only occur at z = 0 or 1.

2.1 Quadratic transformations

The class of hypergeometric polynomials that admit a quadratic transformation is spe-
cified by a necessary and sufficient condition due to Kummer (cf. [1], p.560). There are
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twelve polynomials in this class (cf. [14], p.124)

F (-n, b; 2b; z) F (-n, b; -n - b + 1; z) F (-n, b; -2+51. z)

F (-n, b; ½; z) F (-n, -n + 1; c; z) F (-n, b; -n + b + ½; z)

F (-n, b; ý; z) F (-n, -n -1; c;z) F (-n, b;-n +b -1; z)

F (-n, b; -2n; z) F(-n,b; b+n+ 1; z) F(-n,n+ 1; c; z).

The most important polynomial in this class is F(-n, b; 2b; z) because complete analysis
of its zero distribution for all real values of b (cf. [4], [5]) leads to corresponding results
for the zeros of the Gegenbauer polynomials Cn (z) for all real values of the parameter
A (cf. [6]).

Theorem 2.1. Let F = F(-n, b; 2b; z) where b is real.

(i) For b > -½, all zeros of F(-n, b; 2b; z) are simple and lie on the circle Iz - 11 = 1.
1

(ii) For -½ -j <b < - -j, j = 1,2,... [n] -1, (nn- 2j) zeros of F lie on the circle

Iz - 1 = 1. If j = 2k is even, there are k non-real zeros ofF in each of the four
regions bounded by the circle Iz - 11 = 1 and the real axis. If j = 2k + 1 is odd,
there are k non-real zeros of F in each of the four regions described above and the
remaining two zeros are real.

(iii) Ifn is even, for - [n] <b < - [R] + I, no zeros ofF lie on Iz - 11 = 1. Ifn = 4k,
all zeros of F are non-real whereas if n = 4k +2, two zeros of F are real and 4k are
non-real. If n is odd, for -1 - [n] < b < - [E] + -, only the fixed real zero ofF at
z = 2 lies on z - 11 = 1. If n = 4k + 1, n - I = 4k zeros ofF are non-real whereas
if n = 4k + 3, two further zeros are real and the remaining 4k are non-real.

(iv) For j - n < b < j - n + 1, j = 1,2,....[]-1, (n-2j) zeros ofFare real and

greater than 1. If j = 2k is even, all remaining 2j zeros of F are non-real with
k zeros in each of the regions described above; while if j = 2k + 1, 4k zeros are
non-real as before and 2 are real.

(v) For b < 1 - n, all zeros of F(-n, b; 2b; z) are real and greater than 1. As b -* -0,
all the zeros of F converge to the point z = 2.

An analogous theorem which describes the behaviour of the zeros of Cn\ (z) can be

found in [6], Section 3 or [7], Theorem 1.2.

For the polynomial F (-n, b; ½; z) the following result has been proved in [7], The-
orem 2.3.

Theorem 2.2. Let F = F (-n,b; ½; z) with b real.
(i) Forb > n - I, all n zeros ofF are real and simple and lie in (0, 1).

(ii) Forn- -j < b<n+ -j,j= ,2,...,n-1, (n-j) zeros ofF lie in(0,1)

and the remaining j zeros of F form [f] non-real complex pairs of zeros and one

real zero lying in (1, co) when j is odd.
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(iii) For 0 < b < ½, F has [1] non-real complex conjugate pairs of zeros with one real
zero in (1, oc) when n is odd.

(iv) For -j < b < -j + 1, j = 1, 2,..., n - 1, F has exactly j real negative zeros. There
is exactly one further real zero greater than 1 only when (n - j) is odd and all the
remaining zeros of F are non-real.

(v) For b < 1-n, all zeros ofF are real and negative and converge to zero as b -* -0o.

A very similar theorem is proved for the zeros of F (-n, b; ; z) in [7], Theorem 2.4
with, only minor differences of detail.

For the hypergeometric polynomial F(-n, b; -2n; z), less complete results have been
proved. We have (cf. [8] Theorem 3.1 and Corollary 3.2) the following.

Theorem 2.3. Let F = F (-n, b; -2n; z) with b real.

(i) For b > 0, F has n non-real zeros if n is even whereas if n is odd, F has exactly
one real negative zero and the remaining (n - 1) zeros of F are all non-real.

(ii) For -n < b < 0, if -k < b < -k + 1, k = 1,...,n, F has k real zeros in the
interval (1, oo). In addition, if (n - k) is even, F has (n - k) non-real zeros whereas
if (n - k) is odd, F has one real negative zero and (n - k - 1) non-real zeros.

(iii) For-n> b> -2n, if -n-k > b> -n-k-1, k=0,1,...,n-1, F has (n-k)
real zeros in the interval (1, 0o). In addition, if k is even F has k non-real zeros
while if k is odd, F has one real zero in (0, 1) and (k - 1) non-real zeros.

(iv) For b < -2n, all n zeros of F are non-real for n even whereas for n odd, F has
exactly one real zero in the interval (0, 1).

The identities (cf. [7], Lemma 2.1)

F(-n,b; c; 1- z) - b)nF(-n,b; 1 -n+ b -c; z) (2.1)

and

F(-n, b; c; z)= (c)Fb. (-z)nF (-n,l-c-n; 1-b-n; (2.2)

hold for b and c real, c • {0,-1,... ,-n + 1}. Applying (2.1) and (2.2) to each of
the polynomials F(-n,b; 2b; z), F (-n,b; ½; z), F (-n,b; q; z) and F(-n,b; -2n; z)
in turn, we obtain the remaining eight polynomials in the quadratic class. It is then an
easy task to deduce analogous results for their zero distribution.

A similar set of results has been proved for the sixteen hypergeometric polynomials
in the cubic class. Again, this class arises from a necessary and sufficient condition (cf.
[2], p.67) and details can be found in [7].

3 The real zeros of F(-n, b; c; z) for b and c real
The results proved below are due to Klein [9] who considered the zeros of more general
hypergeometric functions (not necessarily polynomials). Klein's proof is geometric and
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difficult to penetrate. A more transparent perspective in the polynomial case may be
provided by the approach given here.

The classical equation linking the hypergeometric polynomial F(-n, b; c; z) with Jac-
obi polynomials Pn('`)(z) is given by (1.2). We will find an alternative expression (cf.
[12], p.464, eqn. (142))

F(-n, b; c; z) = n!z.P,(•'•) 1X- 2)(, (3.1)
(c). \ z/

where a = -n-b and )3 = b-c-n, more suited to our analysis. The number of real zeros
of Pn("3)(x) in the intervals (-1, 1), (-so, 1) and (1, oo) are given by the Hilbert-Klein
formulas (cf. [13], p.145, Theorem 6.72), also known to Stieltjes. We use Klein's symbol

0 ifu< 0
E(u) = [u] if u > 0, u 5 integer

u-1 ifu = 1,2,3,...

Noting that under the linear fractional transformation w = 1 - 2/z, the intervals
1 <w <so, -so <w < -1 and -1 <w < 1 correspond to -so <z <0,0 < z < 1
and 1 < z < so respectively, we can use equation (3.1) to rephrase the Hilbert-Klein
formulas for hypergeometric polynomials.

Theorem 3.1. Let b, c E R with b, c, c - b: , -1,...,-n + 1. Let

Y = E{~l(-1-cI+In+bj-Ib-c-nI+1)} (3.3)

Z = E{2(-[1-cj-[n+bj+[b-c-nj+l)} (3.4)

Then the numbers of zeros of F(-n, b; c; z) in the intervals (1, so), (0, 1) and (-so, 0)
respectively are

N 2[(X + 1)/2] if (-1)" (-nb) (bnc) > 0

1 2[X/2] + 1 if ( 1) (b) (bc < 0

f 2[(Y + 1)/2] if (nC)(b c) > 0
N 2[Y/2] + 1 if -c (I (3.6)1 2Y/]+ j(C)(C) <o

Sif -c) -b)

N3 = f 2[(Z + 1)/2] if n() ( nb) > 0 (3.7)
N 2[Z/2] + 1 nf( n)(n)<0.
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Proof: The expressions all follow immediately from the Hilbert-Klein formulas (cf. [13],
p.145, Thm. 6.72) together with equation (3.1).

Theorem 3.2. Let F = F(-n, b; c; z) where b, c E R and c > 0.

(i) For b > c + n, all zeros of F are real and lie in the interval (0, 1).
(ii) For c < b < c + n, c + j - < b < c + j, j =1, 2,..., n; F has j real zeros in (0, 1).

The remaining (n - j) zeros of F are all non-real if (n - j) is even while if (n - j)
is odd, F has (n - j - 1) non-real zeros and one additional real zero in (1, c).

(iii) For 0 < b < c, all the zeros of F are non-real if n is even, while if n is odd, F has
one real zero in (1, cc) and the other (n - 1) zeros are non-real.

(iv) For -n < b < 0, -j < b < -j + 1, j = 1, 2,..., n, F has j real negative zeros. The
remaining (n - j) zeros of F are all non-real if (n - j) is even, while if (n - j) is
odd, F has (n - j - 1) non-real zeros and one additional real zero in (1, cc).

(v) For b < -n, all zeros of F are real and negative.

Proof: We use the identity (cf. [1], p.559, (15.3.4))

F(-n,b; c; z) = (1- z)nF (-n,c b; c; z (3.8)

to show that (i) W (v) and (ii) •> (iv) so that it will suffice to prove (i), (ii) and (iii)
above.
(i) •. (v): If b < -n then c-b > c+n and by (i), all zeros of F(-n,c-- b; c; w) are
real and lie in the interval (0, 1). Since w = z/(z - 1) maps (-cc, 0) to (0, 1), (v) follows
from (3.8).
(ii) • (iv): If-j < b < -j+1, j = 1,2,...,n, then c+j- 1 < c-b < c+j,
j = 1, 2,..., n. By (ii), since w = z/(z -1) maps (-co, 0) to (0, 1) and (1, co) to (1, co),
(iv) follows again from (3.8); To prove (i), (ii) and (iii), we note that in each part, b > 0
(and of course c > 0 by assumption). Then

sign (-) (-1)', sign ( ) =(-1)n. (3.9)

(i) Suppose b > c + n. Then b - c > n and

sign (b n c) > 0 for all n. (3.10)

Considering (3.5), (3.6) and (3.7) with (3.9) and (3.10), we observe that

Ng = 2[(X+1)/2], N 3 =2[(Z+1)/2],

{22 [(Y + 1)/2] for n even
N 2 [Y/2] +1 for n odd

Assume now that c > 1. Then for b > c + n, we have from (3.2), (3.3) and (3.4)
that X = 0, Y = n, Z = 0. Substituting these values into N 1 , N 2 and N3 yields the
result. A similar calculation shows that the same result is obtained when 0 < c < 1.
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(ii) For c+j - 1 < b < c + j, j = 1,2,..., n, we find that sign (b~c) = (-l)'-j. Then
from (3.5), (3.6), (3.7) we see that

S2[(X+1)/2] for (n-j) even
NJ =

2[X/2] + 1 for (n- j) odd

f2[(Y-+ 1)/2] for j even

2[Y/2] + 1 for j odd

N 3 = 2[(Z+ 1)/2].

It follows from (3.2), (3.3) and (3.4) by an easy calculation that X 0, Y =j,

Z = 0 and we deduce that N1 = 0 if(n-j) iseven
1 if(n-j) is odd , N2 j and N3 0

which proves (ii).
(iii) For 0 < b < c, sign = (--1)". Then N1 = 2(X+ 1)/21 if n is even

n 2 [X/2] + 1 if n is odd

N 2 = 2 [(Y + 1)/2], N 3 = 2 [(Z + 1)/21. Also, we find X = 0, Y = 0 and Z = 0
which completes the proof of (iii) and hence the theorem. EJ

For c < 0, the range of values of b and c that have to be considered can be reduced
if we use the identities (2.1) and (2.2). Since the real zeros of F(-n, b; C; z) are now
known for all c > 0 and b E IR from Theorem 3.2, it follows from (2.1) that we need only
consider c - b > 1 - n. Similarly, from (2.2) and Theorem 3.2, we can assume b > 1 - n.

We split the result for c < 0 into the cases where b > 0 and 1 - n < b < 0.

Theorem 3.3. Let F = F(-n, b; c; z). Suppose that c < 0, b > 0, c - b > 1 - n. Then

(i) 1-n < c-b<0 and0<b< n-1 andl-n < c<0.
(ii) If -k<c< -k+l, k=1,...,n-1 and

-j <c-b< -j+l, j= ... ,n-1,

then F(-n,b; c; z) has (j-k) Ž> 0 real zeros in (0, 1). For the remaining (n-j+k)
zeros ofF

(a) (n - j + k) are non-real if (n - j) and k are even

(b) (n - j + k - 1) are non-real and one real zero lies in (1, oo) if (n - j) is odd
and k is even

(c) (n - j + k - 1) are non-real if (n - j) is even, k odd and one zero is real and
negative

(d) (n - j + k - 2) are non-real if (n - j) is odd and k is odd with one real negative
zero and one real zero in (1, oo).

Proof: (i) This follows immediately from c < 0, b > 0, c - b > 1 - n.
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(ii) Forc<0, b>0, c-b>l-n, wehave

Il-cl=1-c, Ib+nl=b+n, lb-c-nl=c-b+n

and it follows from (3.2), (3.3) and (3.4) that

X=E(1-c-n), Y=E(b), Z=E(c-b).

Since 1-c-n <0 and c-b < 0, X = Z=0. Now sign(-b) = (-1)n and for

k= 1,...,n-1, -k<c< -k+1•=sign(nC) = (- 1 )n-k, while for -j < c-b <

-j + 1, j = 1,...,n - 1, sign (bnc) = (_l)n-j. Therefore, from (3.5), (3.6) and

(3.7),

NJ -- 0 if (n -j) even (3.11)
1 if(n-j) odd

N2[(Y + 1)/2] if (j - k) is even
N2 = 21[Y/2] + 1 if (j- k) is odd Y E(b) (3.12)

N 3  0 if k even (3.13)S1 if k odd

Now for j > b-c > j-1 and -k < c < -k+1, b E (j-k- 1, j- k+ 1),
j-k = 1,2,...,n-2. If bE (j-k-l,j-k), Y =E(b) =j-k-1, whereas if
b E (j-k, j-k+1), Y = E(b) = j-k. Considering the cases (j-k) even and (j-k)
odd, it is straight-forward to check that for all j, k E N with j - k = 0, 1, .... , n - 2,

we have
N 2 = j - k. (3.14)

Equations (3.11), (3.12), (3.13) and (3.14) complete the proof of (ii).

By virtue of Theorem 3.3 and the identities (2.1), (2.2) and (3.8), it is easy to see
that we only have one possibility left that has not been analysed, namely,

1-n<c-b<O, 1-n<b<0, 1-n<c<0. (3.15)

Theorem 3.4. Let F = F(-n,b; c; z) where b and c satisfy condition (3.15). If -j <
b<-j+l,j=l,...,n-1;-k<c<-k+l,k=l,...,n-land-e<c-b<-e+l,
f= 1,... ,n- 1, then F has no real zeros ifn+j+f, k+t, j+k are even, one real zero
in (1, co) if n + j + f is odd, one real zero in (0, 1) if k + f is odd and one real negative
zero if j + k is odd.

Proof: Under the restrictions (3.15), we have

I1-cI=l-c, lb+nl=b+n, lb-c-ni=c-b-n.

Then from (3.2), (3.3) and (3.4),

X=E(1-c-n), Y=E(b), Z=E(c-b),
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and it follows from (3.15) that X = Y = Z = 0. Also, sign (.b) = (-l)n-j, sign (•) =
(- 1 )n-k and sign (bnc) = (-n1)-. The stated result then follows immediately from

(3.5), (3.6) and (3.7). 1J
Remark 3.1 We have not considered the asymptotic zero distribution as n --* oo
of F(-n, b; c; z). There are recent interesting results in this regard using different ap-
proaches, namely complex analysis techniques [10], matrix theoretic tools [11], asymptotic
analysis of the Euler integral representation /3] and analysis of coefficients [8].
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