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Accurate approximation of functions with
discontinuities, using low order Fourier coefficients

R. K. Wright

Depdrtment of Mathematics and Statistics, UVM, Burlington, VT, 05445 USA.
‘ wright@emba.uvm.edu

Abstract

In previous work we introduced a method of using polynomial splines with appropriate
discontinuities to approximate a piecewise smooth function f with jump discontinuities of
f and f’. The information used is location of discontinuities, and low order, possibly noisy
Fourier coefficients. The number of discontinuities was limited to two at most, and the
discontinuities needed to lie at meshpoints in a uniform mesh. We showed that the linear
operator corresponding to the method is La-bounded with a modest bound, and thus
that the method is La-robust in the presence of noise. In the present paper we develop
a new method of analysis which enables us to determine operator bounds that are valid
for arbitrarily many discontinuities. The new analysis allows discontinuities to be placed

- arbitrarily. Given a placement, an initially uniform spline mesh of width h must be used
such that nearest meshpoints to discontinuities are at least 4h apart (discontinuities then
replace these meshpoints); the number of available Fourier coefficients must be at least

' three times the number of mesh intervals in a period. The previous work was restricted
to quadratic splines; the present work includes cubic splines. Much of the analysis uses
exact computations with a computer algebra system. We give an example to illustrate
the accuracy of the method using noisy Fourier coefficients.

1 Introduction

We consider approximating a function f when the information consists of low order, pos-
sibly noisy Fourier coefficients, and knowledge that f is smooth except for jumps of f or
f’ at known locations but unknown magnitudes. We will work with a method, introduced
in [10], which amounts to linear least squares fitting of the available coefficients with the
coefficients of splines with appropriately placed discontinuities. Since we anticipate ap-
plications to ill-posed problems where boundedness of the solution operator is crucial,
we develop a method for bounding the norm of this operator. The bounding method
depends heavily on exact computations in certain spline spaces. These computations are
fundamentally finite dimensional linear algebra with rational integer coeflicients. Their
goal is to develop upper bounds for the norms of certain projector operators whose
norms are naturally expressed in terms of generalized eigenvalues, and to prove by exact
computation that the bounds are correct. A computer algebra system is used for the
computations. The programming is detailed in [9].
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Accurate approzimation, discontinuities

In [10] we obtained bounds under much more restrictive conditions than in the present
paper. In [10] the splines were quadratic only, while here results also are given for cu-
bic splines. The analysis in [10] required all knots of the approximatirig splines to be
uniformly spaced, and since the discontinuities are at the knots, the location of discon-
tinuities was limited. Further, in {10] the estimation process is linear in the total number
of discontinuities, and produces results unacceptably large for cases with more than one
discontinuity of f and two of f’. :

Others ([2, 3, 4, 5]) have addressed questions of accurate approximations to functlons
with dlscontlnultles given Fourier coefficients as information. In [8] we give examples
which show that those methods can substantially magnify noise in the coefficients; our
main concern here is to prove robustness of our method. We illustrate with an example
in Section 5. ‘

2 General linear space-theoretic results

Let V be a real Hilbert space with inner product { , ). We will denote the norm
associated with ( , ) by || ||. Let P and Q be closed subspaces of V; suppose P is the
orthogonal projector on P. Here, as in [10], we deal with the approximation f* obtained
as the solution to the constrained least squares problem

min || Pf* - Pf||, f* € Q.

Assuming that P is invertible as a mapping on Q, we denote by P* the mapping from
P(Q) to Q which inverts P. It is not hard to verify that f* = PTRPf where R is the
_orthogonal projector on P(Q). Let A denote the operator that takes f to f*.

Theorem 2.1 Let C be a mapping from V to Q. Let € be T-periodic and in L2(0,T).
Then .

IACPS +) - £l < (IP*1l+ DlIC —fn P el

Proof: A(Pf+€) = Af + Ae. ||Af — fIl < ||Af = Cfl|+ICf = fI| = ||A(f —C|
+ICf = fll < (1Al + DIIf — C£ll. 1Al = [|[P*RP|| < ||P*|| because P and R are
orthogonal projections. a

A main objective of the following work will be to bound ||P*]]. This will be done
by establishing upper bounds for ||I — P|| as a mapping on Q. From these, bounds can
easily be derived for ||PT]|.

Theorem 2.2 Let n < 1 exist such that ||(I — P)q|| < nllgl|, for all q € Q. Then P is
injective as a mapping on Q and for all h € P(Q), P*, the inverse of the restriction of
P to Q, satisfies .

I1PFRI[? < |1AII.

_772



404

R. K. Wright

We will obtain bounds for ||I — P}| by considering the projector perpendicular to a
spline space G which is more tractable than PV, and on which I — P is small. In the next
section, @ is the approximating spline space, & a subspace of maximally continuous
splines, and G is a space of maximally continuous splines whose knots are in a mesh
refining the mesh for the members of S. S and G have orthogonal projectors S and G,
respectively. The following estimates ||I — P|| in terms of ||I — G||.

Theorem 2.3 Suppose ||(I - P)g|| < nollgl] for all g € G. Suppose ||(I - G)g|| < mllql|
for all g € Q. Then ||(I — P)q|| < (no +m)llgl| for all for allq € Q.

Proof: For g€ Q, ||(I - P)q|| < ||(I — P)Gqll + |I(I = P)( - G)qll.
[I[(I — P)Gq|l < m0l|Gqll < mollgll, and ||(Z — PYI = G)gl| < [|( = GYgll <mllgll. O

Theorem 2.4 enables us to bound ||7—G|| on Q by instead bounding projectors orthogonal

- to small subspaces of G, restricted to small subspaces of Q.

Theorem 2.4 Let G and S be closed subspaces of V with S CGN Q. Let V1, Va,...,V;
be nonzero mutually orthogonal subspaces of V. Let @; C QNV;, 1 <i <r be nonzero
closed subspaces such that Q =S+ Q14+ Qo+ + Q. Let G CGNV;, H; C St NV,
1 < i < r be nonzero closed subspaces with orthogonal projectors G;, H;. Let v be a con-
stant such that ||(I — G3)g||* < v||Hiq||? for all g; € Q;,1 <i <. Then ||(I - G)g||? <
v||g|]? for all g € Q.

Proof: ¢ € Q can be written ¢ =s+v wherese€ Sandv=q1+¢q+--+¢r, ¢ € Qs,
1<i<r ||(I-G)gll =||(I-G)vl sinceS CG. Let F=G,+Gy+---+G,. Since

G Got 4G CG, (T =Gl < | — F)ol* = 30, (7 = Gi)gil|°, the latter

equality because of orthogonality of the G;. |[g||* > ||(I — S)v||? > || i Hiv|]2 =
i1 |Higs||?, since 37, H; € S*, and the H; are orthogonal. If all H;q; = O the
hypothesis implies all (I — G;)g; = 0. The above then implies (I — G)q = 0, and the
conclusion is true. We proceed assuming H;q; # 0 for some 7 and let A/ be the set of all

those ¢. Then )
10~ Gl Sien I - Godal
lall> 7 Pien I1Hiqll?
An elementary argument shows the quotient of sums is < v since for each i € N,

(I = Go)ail /1 Higsl |* < v. O

3 Bounds for restricted projectors

Below, we specialize the spaces of the last section, and get our main results. Let T > 0
be a fixed period. We take V to be the space of real-valued T-periodic functions which
belong Ly (I) for some, and thus every, period interval I. On V and its subspaces we define
the inner product (f,g) = J; f(t)g(t) dt, I a period interval. The other realizations are
defined in the statements and proofs of the following results. Lemma 3.1 sets up an
application of Theorem 2.4; Theorem 3.2 uses this, together with Theorem 2.2, to get
our main result. ‘

Lemma 3.1 Let X be a finite set of points in [0,T). Let N > 4 be an integer. Let
K = {iT/N,0 < i < N}: for each z € X, let k; be a member of K closest to x where
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0 is identified with T. Assume N large enough that between any two distinct k; are at
least three other members of K. Let Kx result from substituting in K each x € X for its
ky. Form = 3,4 let Q be the space of m-th order T-periodic polynomial splines with K x
as knots and with continuity C™ 2 at all knots except the x € X, where no continuity
is required. Let G be the space of m-th order periodic splines with knots in [0,T) at the
points {iT/(3N),0 < i < 3N}, and let G be the orthogonal projector on G. Then I — G
restricted to Q satisfies ||I — G||3 < .69 if m =3, and ||[I - G|2< .9 if m =4. '

Proof: Let S be the subspace of @ consisting of those splines which are C™ at the
k. Clearly S C'G. Let h = T/N.Fixz =x; € X = {z1,22,...,2-} and let yo = z;,
Yo = kg, — ah, @ = —2,-1,1,2. Take V; to be the subspacevof V consisting of those
functions with support in [y—2,y2] and its T-translates.

For m =3 let j; and j2 be B-splines with knots y_l,yo,yo,yo and yo,yo,yo,yl, let
43 be the difference of the B- splines with knots y_2,y_1,%0, y1 and y_1,Y0,41,¥2 (see [1]

for explanation of multiplicity versus degree of continuity). For m = 4 let j; and j; be

-B-splines with knots y_1, %o, %o, Yo, Yo and ¥o,Yo,¥0,%0,¥1; let js3 be the difference of the
B-splines with knots y_2,y—1,¥0,%0,¥1 and y_1,Y0,¥0,¥1,y2; and let j4 be the B-spline with
knots y_2,y_1,%0, ¥1,Y2. Since y2 —y_p < T we may identify the j, with their T-periodic
‘extensions.

Let @Q; be the space of splines whose generic member is qi =y w1 Cajo for constants
- ¢q- For each i, nonzero members of Q; have continuity from C™~ through full discon-
tinuity at x;, while members of S are C™ at z;. It follows that SN(Q1+ Q2+ -+ Q) =0
and Q=8+ Q1+ + Q.

Let G; be the subspace of G with basis the C™~2 periodic B-splines whose knots
in the period containing [y_s,y2] are length m -+ 1 sublists of consecutive knots from

- the list (ah/3 + kg, —6 < o < 6). Let H; be the space of those m-th order periodic

- splines which in [-T/2 + k;,T/2 + k;] have support in [y_s,¥s], which have knots at
the y;, i # 0 and at x, are C™ 2 at y_, and y;, which may be fully discontinuous at
Y—2,Y2, and z, and which are orthogonal to all members of S. [[(I —G;)q:||*/||H;g;||? is a

ratio of quadratic forms in the c,. An upper bound v for it can be obtained as an upper

bound for the eigenvalues of the pencil A — AB where aas = (I — G:)ja, (I — Gy)jp),
) baﬁ = <Hz.7aaH1..7,3>7 1< aaﬁ) <m.:
‘ In [9] explicit bases for the spaces G; and H; are calculated as m-th order splines.
From their definitions ([1]), B-splines are rational functions of the knots, and thus are
also inner products of B-splines. The null-basis and orthogonal projection calculations
in [9] use standard methods which involve only rational operations. Thus the (I — G;)jq
and H;j, and then the a,p and byg are rational functions of the knots of g;, so long
as z remains in [k, kz + h/3]. When z crosses into [k + h/3, ks + /2], thus crossing
knots for splines in G;, the rational functions change, so in general the matrix entries
are piecewise rational functions of z.

Let v be a conjectured upper bound for the maximum eigenvalue A\,q; of A~ AB (in
[9] a floating point approximation to Apm.z is plotted as a function of ; v is determined
from inspecting this plot). For computational convenience in [9] we represent x as 2eh/3+
kz, 0<e<1/2forz <ky,+h/3,and as (1+€)h/3+k;,0<e<1/2fork,+h/3<z <
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k; + h/2. For further convenience we take k; = 0, clearly losing no generality. We have
represented only z > k., but because of symmetry, # < k, produces the same bounds.

Since h is a linear factor in all knots in the calculation, we see that ans and bap
can be written as h multiplying piecewise rational functions of € (with integer rational
coefficients). The determinant of A — vB is thus h™ times a piecewise rational function
of e. The MAXRAT algorithm ([9]) proves that its reciprocal is bounded as a function
of € in the appropriate ranges, so the determinant itself is bounded away from 0. In [9],
¢ is then set equal to 0 in A — 7B, and the determinant of that matrix is then shown
to have m sign changes as 7 decreases from v. Thus the conjectured value v bounds all
eigenvalues of A — AB for all values of z. The upper bounds thus obtained are v = .69
for m = 3 and v = .9 for m = 4. We emphasize that the B-splines, matrix entries, and
determinants all are calculated exactly, using the Maple ([6, 7]) computer algebra system,
so the bounding property of v is rigorously proven. Since the bounds we obtain apply to
the spaces G; and B; associated with any one of the z;, they satisfy the hypotheses of

Theorem 2.4 which now provides our conclusions. ]

Our main result now follows.

Theorem 3.2 Let the hypotheses be those of Lemma 8.1. In addition, let P be the
orthogonal projector onto the space of n-th order real-valued T-periodic trigonometric
polynomials, where n > 3N. If m = 3, we have ||P*||2 < 2.4, while if m = 4, we have
[P]l2 < 4.5.

Proof: The space G in Lemma 3.1 consists of periodic splines with uniformly spaced
knots. Theorem 3.1 of [10] implies that || — P}|z < (e/(1 + @))!/2 where

o= 4%(1/(1 +2r))2m,

In [9] we use this formula to get upper bounds of .076 when m = 3 and .025 when m = 4
for ||I — P||2. Taking these bounds as 7o in Theorem 2.3 and taking the bounds from
Lemma 3.1 as 71 in Theorem 2.3, we obtain from that theorem bounds for ||I — P||2 of
.907 for m = 3 and .974 for m = 4. Theorem 2.2 now applies to produce the present
results. . m

Above, we required n > 3N; under this condition we can get our simplest and most

. comprehensive results. Since we contemplate applying our results where the number n

of useful coefficients may be limited, we have tried to get versions of Theorem 3.2 where
n is smaller compared with N. We have no useful versions for n < 3N and m = 4 (cubic
splines). The following result for quadratic splines may be useful. To formulate it, let
€1 = max{|r — k;|N/T}. In the previous results, the separation of the values x from
their nearest uniform mesh points k, was unrestricted, which corresponds to €; = 1/2.
Here, we can get results for quadratic splines, and n > 2N, provided the = are more
restricted; our methods of analysis “blow up” for n > 2N as ¢; approaches a number
slightly larger than .25.
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Theorem 3.3 Let m = 3 (quadratic splines); let n > 2N . Otherwise, let the hypotheses
be those of Theorem 3.2. Corresponding to the list 0,.1,.2,.25 for values of €1, we have
the list of values 1.7,2.1,3.9,16 as bounds for ||P*|].

Proof: For each of the cases for ¢, an argument similar to the proof of Lemma 3.1
applies to produce a bound #; for ||I — G||2 where G now is defined using the uniform
knot spacing 1/(2N) rather than 1/(3N). The only difference in the argument is that
here, a discontinuity location z always stays in the interval [k, k; +€1h] where h = T/N,
so the matrix entries and determinants can be treated as functions of € in [0, ¢;]. Each
bound 7; now is used just as in the proof of Theorem 3.2, to get the present bounds for

407
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4 Uniform norm bounds

Using representers of point evaluation, as in [8], we can get uniform norm bounds for P*,
and thus for A. The arguments are similar to those in [8]. The main difference is that
there the mesh is uniform and the order m is 3. The constructions of representers extend
fairly easily to the present case: here the norms of representers are functions both of the
evaluation point and the location of the discontinuity nearest to the evaluation point.

One can show that for each point ¢ € [0,T), a spline r; exists in a space U containing Q,

such that (ry, q) = ¢(t) foreach ¢ € Q, and such that |jr||s < k/vh where k =5, m =3
and k = 7,m = 4; h =T/N as before. The computations for the construction and bound
calculations are in [9]. Noting that vT/v/h = v/N, we have

1A Slleo < max||r[lz||Afll2 < (k/\/ﬁ)llP“LIIz\/Tllflloo < BVN|IPF 2]l flloo-

When N < 100 and the hypotheses are those of Lemma 3.1, this gives ||A f||oo <
120}|f]|oo for m = 3, and ||Af]||co < 315||f]|eo for m = 4.

5 Example

Fic. 1.

f - Af, no noise - Af, 1% noise ’ exact f
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We illustrate the method using an example where the function f is 27-periodic and on
[0, 27) consists of the function e~*/6 with a piecewise quadratic added, so as to produce
discontinuities at 0,.5,1.5,2.5, and 4. f is a modification of an example in [2]; for conveni-
ence we have shifted that example left by 1 unit, and we have added the exponential term
because our method can represent a piecewise quadratic exactly in the absence of noise.
Exact (up to 17-decimal digit floating point error) Fourier coefficients are derived from
f by exact integration using the Maple ([6, 7]) system. Noisy approximate coeflicients
are also derived by sampling f at 1024 equidistant values in [0, 27], adding uniformly
distributed pseudo-random noise to the samples, and taking the discrete Fourier trans-
form of the samples. In effect, we work with f 4 ¢ where € is a perturbing function.
The level of the noise is set so that the discrete Lo-norm of the noise vector is 1% of
the discrete Ly-norm of the vector of samples of f. N = 45 and thus n = 135 are the
smallest values of n and N for which the hypotheses of the previous section are satisfied.
Using these values, we proceed with m = 4 (cubic splines) for each of these cases for
Fourier coefficients. Plots of f and of the error for the two cases appear in the figure.
The ratio || f — A(f + €)||2/||f||2 is about .005 for the case of 1% noise. In [9] we develop
a probabilistic estimate of .0037 for the ratio of ||e[|2/{|f||2- This estimate indicates an
Lo-norm noise magnification of about 1.35-fold, compared with the upper bound of 4.5
given in Theorem 3.2. The uniform error, for noise-free coefficients, is about 10~%; com-
putational experiments show this is dominated by truncation error in approximating the
exponential term. In [9] we do the corresponding calculations for m = 3, and find similar
results for 1% noise, with larger, but still small, error for noise-free coefficients.

In [9], we implement Eckhoff’s method as described in [3], used on the above data.
For noiseless data, the results are comparable to those reported by Eckhoff for similar
examples. The uniform norm error seems to be about .06, with errors at jumps somewhat
smaller. For 1% noise, the results of Eckhoff’s method are about 750-fold in error.
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