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Knot removal for tensor product splines

T. Brenna

Dept. of Informatics, Univ. of Oslo, Oslo.
trondbre@ifi.uio.no

Abstract
Given a spline function as a B-spline expansion the object of knot removal is to remove as
many knots as possible without perturbing the spline by more than a specified tolerance.
In 1987 Lyche and Morken proposed an efficient knot removal algorithm which determines
both the number of remaining knots and their position automatically. In this paper we
show how their method can be extended to knot removal techniques for multivariate
tensor product splines. We propose a number of new strategies for removing as many
knots as possible, and discuss some of the advantages and challenges posed by the special
structure of tensor product splines.

1 Introduction

Given a spline function we are often interested in an approximate representation re-
quiring less data. The object of knot removal is to remove as many knots as possible
from a given spline without perturbing the spline by more than a given tolerance. An
efficient knot removal strategy presented in [6] determines both the number of remaining
knots and their location automatically. This strategy was later extended to parametric
curves and surfaces in [5], and incorporated with various constraints such as monoton-
icity and convexity in [1]. An efficient implementation of knot removal for the special
case of trilinear splines is given in [3]. In this paper we address some of the questions
and problems arising when extending the knot removal technique to multivariate tensor
product splines.

The outline of this paper is as follows. We start by fixing notation and presenting
techniques for representing tensor product splines. We then proceed with generalizations
of coefficient norms, approximation methods, methods for ranking the knots etc., as we
review the central parts of the knot removal strategy. Two different ways of performing
knot removal are given together with accompanying strategies for finding the desired
approximations. We end the paper with two examples demonstrating various aspects of
the knot removal techniques presented.

2 Notation

Let d = (dk), m = (Mk) E Zs with 0 < d < m (component-wise) for some positive
integer s. Also let tk = {tkýmk+dk+l be a knot vector with dk + 1 equal knots at both' [ v i = 1

ends and with no knot value occurring more than dk + 1 times, for k = 1,..., s. In this
paper we will treat the collection t = {tk}==1 as a "single" knot vector with "length"
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Knot removal for tensor product splines 323

m + d + 1 defined to be the sum of the length of the knot vectors tk, k = 1,...,s. Given
such a knot vector we may form products of the basis functions associated with each
individual knot vector tk. By letting

S

Bi(x) = Bi,d,t(x) - 1 Bik,dk,tk(Xk) for 1 < i < m,
k=1

where i = (ik) E Z8 and x = (Xk) E IRS ,we get a total of l 1-k=l mk new basis functions
5

for the tensor product space Sd,t 1Sdk tk In this paper we let B k,dk,tk be the ikth

B-spline of degree dk associated with tk, for k = 1,..., s.
To represent an element of Sd,t we use a variant of the classical Kronecker product of

matrices. Recall that if A = (aij)•',__ j n B = (b i,)' l then this

product is given by A 9 B - (aijB)m;=± 1 . In this paper we will use the "equivalent"
product defined by A 9 B - (Abi,.)m2',ý2 which gives a more convenient ordering of
the matrix elements for our use. Also recall that for real matrices A,B,C,D we have the
following useful relations (assuming that the matrix products and inverses are defined)
(A®B)(C®D) = (AC)®(BD), (A®B)-' -= A`' B-1 and A®B = P 1 (B®A)P2 ,
for some permutation matrices P. and P 2 . In addition we have that the product A ® B
will have linearly independent columns, provided the same holds for A and B. For further
properties of the Kronecker product we refer to [4].

An element
m 1  ms

f(x) = B " f,.' kdkt(k = ( fSBid,t(x) E Sd,t
ij=I i,=1 k=l i<m

can now be written

f(x) = BTf,
S

where Bt = 0 Btk with Btk (BL,dk tk,..., Bmkdktk) T for k = 1,...,s. Here f is
k=1

a vector containing the B-spline coefficients F - (fi•,:) of f given by f = vec(F)

Ei<m fiei, where ei - ®eik with eik C R]Mk. Finally we state that for a tensor of realS-- k=1

coefficients F = (fi)i<i<m E ]Rm we let F(1k) denote the tensor F with its elements
rearranged according to the cyclic permutation of the s-tuple {1, 2,..., s} given by ak -
{k,k + 1,...,s, 1,...,k- 1}, for k = 1,...,s.

Finally, for a spline f = Ei<m fiBi,d,t(X) we define a class of weighted lP-norms of
its B-spline coefficients, given by

(Zi<mWi jfi[P) 1/P, for 1 < p < cc,
I1 f IP ,t= max .fiI, for p = o,

1<i<m

where the weights are given by wi ' H-I tk+dk+1-,k for 1 < i < m. Using the
k dk+1

notation introduced above we have that II f 1l1,,t=11 W•/pf llP, (p >- 1) where Wt is a
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diagonal scaling matrix given by
__tk _tk\ tk t
t((dk-d+2 - mk+dk+-l -tkmk

Wt = (9 Wtk, with Wtk = diagil d1..1 I "
k=1 (( dk-i1 dk +1 I

These coefficient norms are easy to compute and are known to approximate the ordinary
LP-norms well for splines of moderate degree [2,6]. In the algorithms we use p = 2 when
computing approximations and p = 00 to measure the error.

3 The knot removal algorithm

Given an element f E Sdt, a tolerance F > 0 and some norm the goal of the knot
removal algorithm presented in [6] is to find a subspace Sd.,- of Sdt (r C_ t) and an
element g E S d,. with 11 f - g 11 < e, and where we want r to be of minimal length. In
this section we review the basic parts of this algorithm as we extend the theory to tensor
product splines. Further details of the material in this section can be found in [2].

3.1 Finding approximations

To approximate f E S dt in a subspace Sd,T, where 7- is of "length" n + d + 1 with
n < m, we use the spline g which is the best approximation to f in the 12, t-norm.
In other words, the spline we seek will be the solution to the minimization problem
min, f - h t2 Solving this problem is equivalent to solving the linear least squareshESd.-

problem given by

min 11Wtl 2 (Ac - f) 1112, (3.1)
CcRn

where A = 0 Ak is the knot insertion matrix from r to t (i.e. Ak is the knot insertion
k=1

matrix from -.k to tk, for k 1..., s), f = vec(F) are the given B-spline coefficients

of f in Sdt and c = vec(C) are the unknown B-spline coefficients of g in Sd.,-. Since

the knot insertion matrix A has full rank and Wt is non-singular, the normal equations
ATWtAc = ATWtf associated with the system (3.1) will have a unique solution which
can be found ([2,3]) by solving a series of s tensor equation systems given by

(A T WtAk) D(7) = (Ak Wtk ) ( (3.2)Ak Wt )k k •k-i,

for k = 1,...,s. Here Dk E Rnk with nk = (nl, ... ,nk,Mak+1,... .,m ), and we let Do =

F, and set the coefficients of the approximation g equal to the solution of the last
tensor equation system, C = D5 . The tensor equations (3.2) can be efficiently solved
by calculating the Cholesky factorization of the banded coefficient matrix (ATWtkAk)[AT'•xrk k)-• Ok

and solving for each right hand side in the tensor (Ak tk)L'k_1•

3.2 Ranking the knots

The final approximation to the initial spline is found by searching through a sequence of
approximations, constructed by using the approximation method of the previous section,
on subsets of the knots of the initial spline. These subsets are calculated by associating a
weight with each interior knot, representing a rough measure of its importance. See [6] for



Knot removal for tensor product splines 325

the details. For higher dimensional tensor product splines we set the weight for a given
knot to the maximum of the weights corresponding to this knot when the calculation is
iterated over the "remaining" parameter directions. We refer to [2] for further details.

4 Knot removal methods
When removing knots from a tensor product spline we are faced with more options than
in the case of a spline curve. In this section we present two different ways of performing
knot removal. The first one studied in [2] based on a symmetric approach, treats all the
parameter directions of a tensor product spline simultaneously, while the second one will
treat one parameter direction at a time.

4.1 Knot removal based on a symmetric approach

If we let Gf (r) denote the approximation to f S Sd,t defined on the knot vector
,r we see that the approximations in the sequence mentioned above can be written
{Gf (rj)}N'=0 , where rj is constructed from t by removing j of its interior knots, and
N = E'k=l [mk - (dk + 1)] is the total number of interior knots of t. Given such a
sequence of approximations we can perform a search on the index j to determine an
approximation g* = Gf (r*) to the initial spline f with a preferably short knot vector
r*, and with the property that I f - g* II ,t- E, where E is the specified tolerance. If the
knot vector r* is not equal to any of the two knot vectors ro or TN we may repeat the
process to find a new approximation based on g* as proposed in [6]. Taking into account
how the sequence {Gf(r-j)}'= 0 was constructed we expect the error 11 f - Gf( 3j) III=,t
to decrease, but not necessarily strictly, for decreasing values of the search parameter
j. How the search among the possible approximations is done will generally depend on
a number of factors, including some which will be discussed later through examples.
Also note that we only have to compute approximations for indexes actually used in
the search. By treating all the directions simultaneously we take into consideration the
inherent symmetry of the problem. As we will see later this will in some cases enable
us to remove more knots than by treating one parameter direction at a time, but it will
also lead to more complicated and slower code in an implementation.

4.2 Knot removal for one parameter direction at a time

In the second knot removal method we start by thinking of a spline f C Sd,t as a series
of parametric curves in corresponding high dimensional spaces. We can then perform a
parametric knot removal for each parameter direction. The advantage of this approach
is that it is easy to implement since we may use existing knot removal routines for spline
curves with only minor modifications.

In the following discussion we let = ei, with Ei _> 0 for all i, be a given

tolerance. Also let f(x) = -i<m fiBi,d,t(x) = BTf be a spline in Sd,t = ®_Sdk,tk, with
k=i

t ®9 Btl and f = vec(F). We start by identifying a series of parametric curves
k=1

which may be naturally associated with this tensor product spline. We say that the
spline f consists of the curves fk(Xk), for k = 1,..., s, where fk(Xk) is the parametric
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curve in RMk-, for Mk = (1p4 mk)(H-p=k+l ink), given by

fM(Xk) = [(®lIm•) ®Btk] l=k+lImi)f"

We now return to the problem of finding a preferably short knot vector T C t and a spline
S

g(x) = -j<n cjBid,r(x) E Sd,•- = (9 Sdk •,k with the property that 1f - g Iron t< e. To

apply knot removal to f E Sdt we can now go through the following steps for k = 1,..., s.

1. Apply parametric knot removal with the tolerance Ek to the parametric curve
~- Tl , fk x

fk(Xk) = 0(kIn.) (9Bt 0 (9Ii]kl

defined on tk, starting with fo = f.
2. This will produce a new parametric curve defined on the knot vector r-k C tk

fk(Xk) [(k In. OB 7k k ( Im,)fk,

where fk = vec(Fk) for Fk E Rnn,..nk,mk+1,..Smý.

3. We also have that[(-1. T&(= I. )]f
f/'(Xk) = [B k\ 0 +'m®

[(kI,) OBT 0 (T=• sIm,)] [(kl 1 n) OAk® (l=•+iIm,)]fk,

where Ak is the knot insertion matrix from i.k to tk.

4. And consequently
fk-1 k-1)fkf -- ( ll@ k®9(j® Irný] fkj <5Ek.

1ý (=I ] lk+l .I 1--

Finally we let the coefficients of the function g(x) = BTc E Sd.- be c = vec(F.), and

we have the following result.

Theorem 4.1 If we let f(x) = BTf E Sdt and g(x) = B..c E Sd,, be the tensor
product splines from the discussion above, then we have f - g 111=.t< E.

s

Proof: Let A = 0 Ak be the knot insertion matrix from Tr to t, and let fo(x) = Btfo
k=1
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be equal to f and f8 (x) = BTf. be equal to g, i.e. fo = f and f= c. Then

11 f - g II-,t= lIfo - Af. III-
Afo + [('(&'A,) 0 - [(kki) 0 Akf(

k---2 k= 100

r k - 1 [ f k _ 1 ( k - 1 1 .s1l

k=1 ./=<> [Jf® _i 0 k-1~k) [f- KS i o k ~Ii

_I - 9 1. Ak®g I (& l1 m.)]fkýý = S fk - fk <. 0E 1= 1--k+-1 I1- ----

5 Examples

The knot removal methods presented above have been implemented and tested on a
computer. In this section we present trivariate examples from this implementation and
propose different knot removal strategies depending on the problem at hand. See [3] for
a detailed description of this implementation.

Example 5.1 In this first example we will compare two different strategies for searching
through a list of approximations {Gf (r-j)}f'L0 introduced above. We will consider the
knot removal method treating one parameter direction at a time, which means that we
end up solving a parametric knot removal problem with tolerance ej = E/3, i 1, 2,3,
for each of the three parameter directions.

To improve efficiency the parametric knot removal routine implemented is constructed
in a way that lets it abort the computation if an approximation for any component of the
parametric curve fails to lie within the specified tolerance. This fact suggests a search
strategy where we compute successive approximations to the initial spline by adding one
interior knot at a time, starting with zero interior knots, and where each intermediate
approximation is given by the first of these approximation processes to be completed.
Intuitively we would expect such a sequential search strategy to perform best for "large"
tolerances and/or large problems, where it is more to gain by aborting an approximation
process. In this example we have compared this search strategy with a strategy proposed
in [6] using a binary search.

In all the tests we have used an initial trilinear spline constructed by sampling the
function given by f(x, y, z) ½[sin(27rx) + sin(27ry) + sin(27rz)] in the points specified
by a uniform 3-dimensional grid on the domain Q = [0, 1]3, for four selected grid sizes.
Each spline was reduced by using both of the search strategies mentioned above, for
tolerances varying from E = 0.001 to E = 0.01. Both of the search strategies produced
approximately the same end grid size in each test.

In Figure 1 the CPU-time of the two search strategies is plotted against the tolerance
for the selected grid sizes. We observe that the reductions utilizing a binary search
perform best on small problems, while the sequential search strategy turn out to be
superior for large problems.
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FiG. 1. A comparison of two different search strategies.

Example 5.2 In this example we compare the two different knot removal methods
presented in this paper. Here we have used an initial trilinear spline constructed by
sampling a function given by f (x, y, z) = sin(27rX2 YZ) in the points specified by a uniform
3-dimensional grid on the domain Q =[0, 1]3, for varying grid sizes. Each spline was
reduced by both the method based on the symmetric approach and the method treating
one parameter direction at a time.

The results are presented in Table 1. We see that in our implementation the method
using the symmetric approach is by far the slowest method. However, at least for the
type of function considered in this example the method based on the symmetric approach

will give a much better reduction than the other.
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Knot Removal for Trilinear Splines, Tolerance e = 0.005
Start Parametric, binary search Symmetric, binary search
grid CPU End grid Error CPU End grid Error
100F 16.53 72 x 65 x 65 4.93800 10-3 63.23 54 x 53 x 53 4.92080l• 10-
1503 56.44 81 x 71 x 71 4.80243. 10-3 122.2 51 x 49 x 49 4.77236 •10-3
2003 99.48 68 x 66 x 66 4.91142 .10-3 300.9 54 x 50 x 51 4.98275 .10-3
2503 165.3 74 x 62 x 62 4.74970- 10-3 584.8 61 x 56 x 56 4.85916 .10-3

3003 256.8 72 x 62 x 62 4.85316- 10-3 1094 60 x 54 x 53 4.81551 . 10-3
3503 391.4 75 x 65 x 63 4.77028 .10-3 1312 54 x 50 x 50 4.92422 • 10-3

4003 494.6 71 x 59 x 63 4.79631 - 10-3 1865 54 x 50 x 50 4.81064 10-3

TAB. 1 Knot removal for the trilinear splines of Example 2.
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