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Abstract

Given data on multiple variables we present a method for fitting a function to the data
which, unlike conventional regression, treats all the variables on the same basis i.e. there
is no distinction between dependent and independent variables. Moreover, all variables
are permitted to have error and we do not assume any information is available regarding
the errors. The aim is to generate law-like relationships between variables where the data
represent quantities arising in the natural and social sciences. Such relationships are
referred to as structural or functional models. The method requires that a (monotonic)
relationship exists; thus, in the two variable case we do not allow cases where there is
zero correlation. Our fitting criterion is simply the sum of the products of the deviations
in each dimension and so corresponds to a volume, or more generally a hyper-volume.
One important advantage of this criterion is that the fitted models will always be units
(i.e. scale) invariant. We formulate the estimation problem as a fractional programming
problem. We demonstrate the method with a numerical example in which we try and
uncover the coefficients from a known data-generating model. The data used suffers from
multicollinearity and there is preliminary evidence that the least volume method is much
more stable against this problem than least squares.

1 On the undeserved ubiquity of least squares regression

In fitting a function to data, conventional regression requires one variable to be ‘special’
— this is the dependent variable. In the sciences however, one often wishes to re-arrange
the model equation by changing the subject of the formula. Statisticians tell us that
in that case we should carry out a second regression. Yet scientists are uncomfortable
with having separate models for each variable, which are not equivalent to each other
‘and yet are meant to represent the same relationship. Calibration is another case where
one would like mutual equivalence: e.g. in psychology one can have two tests that are
intended to measure the same ability: a formula or conversion table is required to relate
the score on one test to that on the other. .

Another case where regression is inappropriate is where one wants to deduce a para-
meter such as the rate of change (slope). If both variables are subject to error then ordin-
ary least squares will under-estimate the slope, and regressing x on y will over-estimate
it. A simple example involves plotting galaxy speed (or redshift) against distance from
the observer. The slope of the fitted line gives what is called the Hubble constant, whose
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value crucially determines the future of the universe: will it continue expanding or will
it eventually begin to collapse in on itself? Conventional regression gives different values
for the Hubble constant depending on which variable is treated as being dependent, but
there is no apparent reason for choosing one variable as against the other.

An oft-cited reason for using least squares fitting is that under certain assumptions
on the errors, it will provide the best linear unbiased estimate (‘BLUE’) of the slope.
This is the Gauss-Markov theorem, where ‘best’ is taken to mean minimum variance.
. What is not widely appreciated is that ‘linear’ here refers not to the form of the fitted
model, but rather that the expression for the estimated coefficient be linear in y. One
can ﬁnd estimators with even lower variance by removing this non—essentlal condition
e.g. other Ly-norm estimators are not linear in y. :

In multiple regression it is widely, and mistakenly, believed that that the fitted coeffi-

cients tell us the contribution that a particular variable makes to the dependent variable.

In fact, not even the sign of the coefficient can be relied upon to tell us the direction

of the relationship i.e. a particular z-variable may be positively correlated with the y-

variable, and yet have a negative coefficient in the regression model. This is the problem

of multicollinearity: if there are near-linear relations among the explanatory variables

then the coefficients produced by regression will not only be highly uncertain (large
“standard error) but also not be open to sensible interpretation.

We shall present a technique for model-fitting which treats all variables on the same
basis. The method has the important property of being units-invariant; this is an advant-
age not shared by the total least squares approach (also known as orthogonal regression),
and arises from the fact that we use the product of the deviations in each direction rather
the sum (or sum of squares) when calculating the fitting criterion. :

2 The least areas criterion

Consider a set of data points in two dimensions as in Figure 1. By drawing the vertical
and horizontal deviations from the line we create a right-angled triangle for each data
point. Our fitting criterion is simply to minimise the sum of these areas. A key advantage
of this approach is that changing the units of measurement will not affect the resulting
line. In other words it is a scale invariant method. Furthermore we can add a constant

to either variable and the geometry is such that the line merely gets shifted vertically or

horizontally. Combining the scale and translation invariance implies that the least areas
line is invariant to linear transformations of the data. It is also apparent that switching
the axes has no effect: the variables are treated symmetrically. (A textbook dlscussmn
of this method appears in Draper and Smith [5] )

We note that it is essential that there be a non-zero correlation in the data otherwise
the method fails. For those seeking to quantify relationships between data variables in the
experimental sciences this would hardly seem to be a restrictive requirement. However
for those working in the area of design and who are concerned with geometrical shapes,
it does rule out the fitting to data scattered around a vertical or horizontal line, or circle,
or rectangle with sides parallel to the co-ordinate axes etc.. We shall not discuss fitting
curves in this paper but we note that this method is not suitable for fitting a relationship
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F1G. 1. Sum of areas to be minimised in least area calculation.

that is not monotone over the range of the data i.e. there cannot be maxima or minima
over the data range otherwise the area deviation associated with a given point may not
be uniquely specified. Such problems may be avoided by breaking up the data set into
subsets at the optima and fitting a monotone function to each subset, thus producmg a
piecewise monotone function.

The least areas method has an interesting history, it has surfaced under different

. guises in diverse research literatures throughout the twentieth century. In astronomy it

is known as Stromberg’s impartial line. In biology it is the line of organic correlation.
In economics it is the method of minimised areas or diagonal regression. In statistics
it is sometimes referred to as the ‘standard or reduced major axis’. This derivés from
the fact that if the data are standardised by dividing by their standard deviation, then
the fitted line corresponds to the major (i.e. principal) axis of the ellipse of constant
probability for the bivariate normal distribution. Yet another name for this technique is
the geometric mean functional relationship. This is because the slope has a magnitude

- equal to the geometric mean of the two slopes arising from ordinary least squares (OLS)

(proved in Barker, Soh and Evans [2], and Teissier [20]) i.e. if we regress y on z and get
a slope b; and then regress z on y (so as to minimise the sum of squared deviations in
the z- direction) and obtain a regression line y = a + by z, then the geometric mean slope
is b = (b1h2)'/2. It is interesting to note that the two OLS slopes are connected via the
correlation between the variables
2_b
r
T by

This implies that as the correlation falls the disagreement between the two OLS slopes

" increases; for example, even with a correlation as high as 0.71 one of these slopes will

be twice as large as the other! It also follows that the magnitude of the slope of the
least areas line lies between those of the two OLS lines. This is intuitively satisfying in a
technique that aims to treat = and y deviations symmetrically. Specifically, for the case
of positive but imperfect correlation, we have by > b > by because b/r > b > rb.

From the geometric mean property and the expressions for OLS slopes one can deduce
that the magnitude of the slope of the least areas line takes on a particularly simple closed
form: it is the standard deviation of y divided by the standard deviation of z. The sign -
of the slope is provided by the sign of the correlation between y and z.

Numerical experiments have been carried out to compare this fitting technique against -

-five others (Babu and Feigelson [1]). A specified underlying model was used to generate

data (mostly bivariate normal samples) and the aim was to see which method could
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best recover the slope of the model. The simulations involved varying the sample size,
correlation and variances. Orthogonal regression gave the poorest accuracy. There were
two methods that came out with highest accuracy: the least areas method and the least
squares bisector. The latter bisects the smaller angle formed between the two OLS lines.
Unfortunately the OLS bisector is not units invariant and so does not suit our purposes
(Ricker [17]).

Turning now to applications, the method seems to have appeared most often in the

field of biometrics (the application of statistics to biological data). For example, in re-
lating the size of one body part to another (or to the total weight or height) in humans
and other animals, one may collect data from an individual at successive stages in their
growth, or from many individuals at different points in their development. It is not gen-
erally possible to distinguish between dependent and independent variables in such a
context. Isometric growth is the special case where the two body parts grow such that
their size ratio remains constant. Miller and Kahn {13] argue in favour of our method
thus: ‘there is usually no clear justification for saying, e.g. that increase in skull length is
dependent upon increase of body length; it is more realistic to consider changes in skull
length and body length as due to a set of common factors’. Ricker [16] discusses the value
of the method in fishery research. Applications include modelling relationships between
weight and length, between weight and fecundity (the number of eggs), and estimating
the ‘catchability’ of fish (the fraction of the stock taken by one unit of fishing effort).
Rayner [15] gives an application to the flight speed of birds as related to the windspeed.

We have already noted the scope for application in astronomy. Babu and Feigelson
[1] point out that ‘differences in regression methods on similar data may be responsible
for a portion of the long-standing controversy over the value of Hubble’s constant, which
quantifies the recession rate of the galaxies’. The earliest appearance of our method in
the astronomical literature seems to be that of Stromberg [19]. ‘

- The method has also been proposed in the context of educational and psychological
. testing. A very early reference being that of Otis [14] who named it the ‘relation line’.
If two tests are meant to measure the same aptitude or attainment one may need to
match pairs of equivalent scores on the pair of tests for creating a conversion table. The

direction of the conversion should obviously not affect which values are paired off, hence

the need for a symmetric approach. Greenall [7] proposes the ‘equivalence line’ for this
purpose: ‘ 1 ‘ ' o '
‘ Y — Uy U

oy Op

This turns out to be yet another name for our least areas line. For standardised scores
-the line equation reduces to y = z. He also proves a very interesting uniqueness result:
‘When we seek a relation that will deem a pair of scores mutually equivalent if and only
if the proportion of z-scores less than X equals the proportion of y-scores less than Y, we
aim at pairing off scores that give rise to equal percentile ranks. In the case of continuous
bivariate distributions which satisfy a simple condition [F(z,y) = F(y/c, cz)], only the
equivalence relation will provide this relation’. The normal distribution is one case which
satisfies this condition. A relevant theoretical result due to Kruskal [12] is that if the two
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variables are normally distributed and a line is needed to predict x from y as often as y
from z, then the least areas line maximises the probability of correct prediction (i.e. the
probability of being within z standard deviations, for any given z-value). This provides
another justification for the use of this line.

" Hirsch and Gilroy [9] show how it can be useful in hydrology and geomorphology
"where one may be interested in relationships between e.g. stream slope versus elevation,
or stream length versus basin area, etc.. ‘In such cases there is no clear direction of
causality but there is clearly an inter-relation of variables’. ‘A major motivation for the
use of the line lies in the equivalence of the cumulative function of y and yes .

In general terms when should the least areas method be used? Rayner [15] cites the
result of Kendall and Stuart [10] that if no error information is available then this method
gives the least-bias or maximum likelihood estimate of the functional relation. Rayner
goes on to demonstrate that this line also has the property of being independent of the
correlation between the errors of the two variables.

Ricker [17] deals with the question of usage by first distinguishing between random
measurement error and mutual natural variability (as arises for example in biology).
In the former case for each observation there is an associated true point which would
arise if the errors in both variables were zero. If one can estimate the variances of the
errors by replicating the measurements then measurement error models can be used to
estimate the line. One monograph on such models is Cheng and Van Ness [4]. If one
cannot estimate the error variances (or their ratio, A) then Ricker recommends the use
of the least areas line as being the best approximation: it gives y and z equal weight and
will be exact if A = var(y)/var(z), i.e. when the ratio of error variances equals the ratio of
data variances. For the case of mutual natural variability ‘there is no basis for assigning
separate vertical and horizontal components to the deviation’, i.e. ‘it is impossible to
say whether it is y or & that is responsible for the deviations from the line’. In this case
Ricker concludes that if the data are binormally distributed then the least areas line be
used to describe the central trend, and least squares to estimate one variable from the
other. For the mixed case i.e. having both measurement error and natural variability,
‘the best that can be done is to treat them in terms of whichever source of variation
makes the larger contribution to the total. In biological work this will usually be natural
~ variability’. N

Despite appearing in so many other fields, it is remarkable that this technique does not
seem to have appeared in the numerical analysis/approximation literature. For example it
is not listed in Grosse’s Algorithms for Approximation catalogue. The present paper looks
at an obvious way of extending the approach to any number of variables by minimising
volumes.

3 Least volume fitting

We now intend to fit a linear function of the form Z§=1 ajz; = c to data {X;} in p
dimensions, in other words we have data on p variables and we seek a linear relationship
between them. Of course this is not uniquely specified because we can divide through by
any non-zero constant. Thus we are free to impose a constraint on the coefficients, such
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as ¢ = 1. Note that we shall not permit any of the coefficients a; to be zero because that
would imply the associated variable z; is unrelated to the other variables

One obvious way of generalising the least areas procedure to higher dimensions is to
minimise the volumes (or hypervolumes). Each data point will have associated with it a
‘volume deviation’ which is simply the product of its deviations from the fitted plane in
each dimension. We must take care to make all these non-negative by taking the absolute
values. For the ith data point this volume deviation V; is proportional to

(2F_1a;Xi; — o)
- .
Hj:l aj ;
We now introduce non-negative variables 1, v; to deal with the absolute value of the

numerator. The positive u; represent points on one side of the fitted plane, and positive
v; refer to points on the opposite side. Setting ¢ = 1 allows us to model the bracketed

term thus: , ,
V; = Zanij -1
J

At least one of each of the pairs {u;,v;} will be forced to bé zero by their presence in
the objective function which is being minimised. Consequently the numerator can be
represented as Y (u} +v¥). We shall suppose the denominator is positive; if it is not we
can always make it so by multiplying one of the z-variables by —1 so that its coefficient,
.and hence that of the product of coefficients, also changes sign. We can now formulate
our problem as the following fractional programme:

Minimise Z(ul +F)/ H dj

i
“such that U; — V; = Zanij -1

and Uj, Vg > 0.

The field of fractional programming is comprehensively covered by Stancu-Minasian
[18]. We note that Draper and Yang [6] used a different route to generalising the technique
to more than two dimensions. They minimised the pth root of the squared volumes and
showed that the estimated coefficients were a convex combination of those from the p
OLS estimates.

4 Numerical test

We shall now apply the least volume criterion to try and uncover the coefficients from
data that have been generated from a known underlying model with some randomness
thrown in. In order to make this a difficult test we shall choose data, which suffers from
multicollinearity. This means that there is a near linear dependence within the data, i.e.,
one of the variables almost lies in the space spanned by the remaining variables, and so
we are close to being rank-deficient. The data is taken from Belsley’s [3] comprehensive
monograph on collinearity. The generating model is

y=1.2—0.42, + 0.6z5 + 0923 + €
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with e normally distributed with zero mean and variance 0.01. The absolute correlations
between the variables ranged from 0.35 to 0.61 and so these in themselves would not
have alerted the researcher to any difficulty associated with multicollinearity. Two very
similar data sets (A,B) are tabulated in Belsley based on this model. For set A ordinary
least squares (OLS) gives:

‘126+097$1+90T2—3841‘3

The fit as measured by R2 is very good at 0.992 but the underlying model is far from
being uncovered. In particular, the coefficient of x, is 15 times too high and two of the
coefficients have the wrong sign! Getting the signs wrong is very serious if one is trying to
understand how variables are related to each other. Turning to the least volume approach

we find:

y =1.20—-0.43z; 4+ 0.37z3 + 1.9723.

We now have all the correct signs and the magnitudes are much closer to the true ones.
Repeating this for data set B:

OLS: y = 1.275 4 0.25z; + 4.5z — 17.6x3
Least volume : y = 1.20 — 0.43z; + 0.37z2 + 1.98x3.

Once again the least volume approach produces a superior model. Moreover it is also
worth noting that the two OLS models are very different from each other whereas the
least volume models seem to be more stable to small variations in the data. This is
noteworthy because of how similar the two data sets were: the y-values were identical
for sets A and B, and the z-values never varied by more than one in the third digit.
Thus our method seems to be much more stable than OLS. Of course a comprehensive
set of Monte Carlo simulations is required to fully explore this aspect.

5 Conclusion

We have presented a fitting method whose criterion combines the deviations in each
dimension by multiplying them together. This simple device means that re-scaling of
any of the variables e.g. by changing the units of measurement, will give rise to an
equivalent model. This property of units-invariance is not shared by the total least
squares approach (or orthogonal regression: where the sum of the perpendicular distances
to the fitted plane are minimised). By taking the product of the deviations we ensure
that all variables are treated on the same basis and this is useful if the purpose is to find
an underlying relationship rather than to predict one of the variables.

When we applied the technique to data we were able to recover the underlying rela—
tionship much more closely than 'when least squares was used. Not only were the signs

‘of the coefficient correctly reproduced (which is crucial for understanding directions of

change) but also the magnitudes were much closer to the true values than least squares
estimates. It appears that the least volume method may be superior when there is mul-
ticollinearity in the data. Much more simulation needs to be done to investigate this
potentially very valuable feature.
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