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Matsugasaki, Sakyou-ku, Kyoto 606-8585, JAPAN

Abstract

Numerical simulations using the lattice Boltzmann method are presented
for the two- and three-dimensional decaying homogeneous isotropic turbu-
lence for low, medium and high Reynolds numbers. Time history of global
statistical quantities, wave number spectra, and vorticity contour plots are
compared with those of the higher-order method of lines. Comparisons be-
tween the square lattice and the triangular (FHP) lattice models are also
performed. It is found that the lattice Boltzmann method is able to re-
produce the dynamics of decaying turbulence and could be an alternative
for solving the Navier-Stokes equations. Computational costs of the lattice
Boltzmann method is less than half of that of the 10th-order method of
lines.

1. Introduction

The rapid development and introduction of new supercomputer systems
over the last decade has opened new opportunities for numerical studies of
incompressible fluid flows. The direct numerical simulations of turbulence is
one of such problems. So far almost all direct simulations of turbulence has
been carried out by either spectral[l] or pseudo spectral[2,3] approximation
to spatial derivatives. However, these methods which require the use of
series are global in character so that they are quite unsuitable for complex
geometry problems and for parallel computing. Therefore, the development
of more flexible and efficient methods is hoped for in the simulations of
turbulence.
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We have proposed a new higher-order method based on a method of
lines (MOL) approach[4-7] and demonstrated that results obtained by the
method were comparable to those using the pseudospectral method with
less than one sixth of the computational time in direct simulation of two-
dimensional homogeneous isotropic turbulence on 513 x 513 grid points.

In the later half of the 80's, a novel technique called Lattice Gas Au-
tomata (LGA) for solving the Navier-Stokes equations was developed. Since
the first two-dimensional model representing incompressible Navier-Stokes
equations was proposed by Frisch, Hasslacher, and Pomeau (FHP) in 1986[8],
LGA have attracted much attention as promising methods for solving a va-
riety of partial differential equations and modeling physical phenomena.
The basic idea of LGA methods is to represent the fluid as an ensemble
of interacting low-order bit-computers situated at regularly spaced lattice
nodes. In the FHP model, the underlying lattice is a close-packed equi-
lateral triangular lattice with nodes at triangle vertices, each node has a
seven-bit state with the first bit specifying the existence or not of a par-
ticle at rest at the lattice node and the remaining six bits specifying the
presence or not of a particle traveling at an angle Vj = (7r/3)j (0 < j _! 6)
along the legs of the triangular lattice. Each particle (except a rest parti-
cle) moves one lattice distance in one fundamental time interval. After the
particles propagate they then interact according to certain collision rules.
Although the LGA method has provided a fast and efficient way for solv-
ing partial differential equations, there exist some fundamental problems
in this method in simulating realistic fluid flows obeying the Navier-Stokes
equations. Besides its intrinsic noisy character which makes the computa-
tional accuracy difficult to achieve, it contains certain properties even in the
fluid limit. The lattice gas fluid momentum equations cannot be reduced
to the Navier-Stokes equations because of two fundamental problems. The
first is the non-Galilean invariance property due to the density dependence
of the convection coefficient. This limits the validity of the LGA method
only a strict incompressible region. Second the pressure has an explicit and
unphysical velocity dependence. To avoid some of those inherent problems,
several lattice Boltzmann (LB) models have been proposed[9-15]. The main
feature of the LB method is to replace the particle occupation variables ni
(Boolean variables) by the single-particle distribution functions (real vari-
ables) fi = (ni), where ( ) denotes a local ensemble average, in the evolution
equation, i.e., the lattice Boltzmann equation. The LB method as a numer-
ical scheme was first proposed by McNamara and Zaretti[9]. In their model,
the form of collision operator is the same as in the LGA, written in terms
of distribution functions and completely neglecting the effect of correla-
tions between particles. Higuera, Jimenez, and Succi[10,11] introduced a
linearized collision operator that is a matrix and has no correspondence to
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the detailed collision rules. Statistical noise is completely eliminated in both
models; however, the other problems remain, since the equilibrium distri-
bution is still Fermi-Diracs. The LB model proposed by Chen et al[12,13]
and Qian et al[14,15] abandons Fermi-Dirac statistic and applies the single
relaxation time approximation first introduced by Bhatnager, Gross, and
Krook in 1954[16], to greatly simplify the collision operator. This model is
called the lattice BGK (LBGK) model.

This paper organized as follows. In section 2 the lattice Boltzmann
methods simulating the Navier-Stokes equations are discussed. The lat-
tice Boltzmann simulation of two-dimensional homogeneous isotropic tur-
bulence is presented in section 3. Three-dimensional homogeneous isotropic
turbulence is presented in section 4. Accuracy and efficiency of the lattice
Boltzmann method in comparison with the conventional higher-order MOL
approach are also discussed. The final section contains concluding remarks.

2. Lattice Boltzmann Method

2.1. SQUARE LATTICE MODEL

In this section an outline is given of the LB methods with BGK model
for the collision operator. A square lattice with unit spacing is used on
which each node has eight nearest neighbors connected by eight links as
shown in Fig.1. Particles can only reside on the nodes and move to their
nearest neighbors along these links in the unit time. Hence, there are two
types of moving particles. Particles of type 1 move along the axes with
speed Iel,ij = 1 and particle of type 2 move along the diagonal directions

with speed 1e2,ij = v2. Rest particles with speed zero are also allowed at
each node. The occupation of the three types of particles is represented
by the single-particle distribution function, f~i(x,t), where subscripts a
and i indicate the type of particle and the velocity direction, respectively.
When a = 0, there is only fol. The distribution function, fi (x, t), is the
probability of finding a particle at node x and time t with velocity eji.
According to Bhatnagar, Gross, and Krook (BGK), the collision operator
is simplified using the single time relaxation approximation. Hence, the
lattice Boltzmann BGK (LBGK) equation (in lattice unit) is

fqj(x + eyi,t + 1) - fji(x,t) = -1[foi(X,t) - 41 yi) (xt)] (1)

where f(0)(x, t) is the equilibrium distribution at x, t and T is the single
relaxation time which controls the rate of approach to equilibrium. The
density per node, p , and the macroscopic velocity, u , are defined in terms
of the particle distribution function by

P -- 3Zfi, pu-- f-e-i (2)
a i dri
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A suitable equilibrium distribution can be chosen in the following form for
particles of each type 2

1() + '.u±1 2_ 4

f (o) (14 - a) 1 1 1 2

2i 4 + 12 p(e2i . u) + 8p(e2. - 2pu (5)

The relaxation time is related to the viscosity by
2•- - 1(6. = -- (6)

6

where v is the kinematic viscosity measured in lattice units. In ref.[17], Hou
et al used the value of a = 4/9 and f3 = 1/9.

The equilibrium populations are determined by assuming that they can
be expressed as a power series in velocity and density of the form:

f1() = Aaj(p) + Ba (p)eij " u + Cj (p)(eUi " u) 2 + D(p),,u 2  (7)

A Chapman-Enskog procedure is then applied to determine the macro-
scopic behavior of this model. The values of Aqi, Bj Ci and D,j are cho-
sen so that the macroscopic behavior matches the Navier-Stokes equations
to as high an order as possible. The resulting continuity and momentum
equations follow.

Op Opu•a- + U + O(E2) = 0 (8)

Oau+ P0% au p +8 ( t/'U 1  +___ + ,2 +0(C
P- at-U 3- ax V K ± ax( + e2 O( ) (9)

Characteristic dimensionless parameters are the Mach number, Ma =
V/3U/c where U is a characteristic macroscopic flow speed and c = 1 in
lattice units, the Knudsen number which is proportional to E = cT/L where
L is a macroscopic flow length, and the Reynolds number, Re = pUL/IP.

2.2. TRIANGULAR (FHP) LATTICE MODEL

Another lattice model commonly used in two-dimensional LB simulation is
a triangular lattice (FHP) model. There are two types of particles on each
node of the FHP model: rest particles and moving particles with unit veloc-
ity ei along six directions as shown in Fig.2. The equilibrium distributions
for the FHP model are given as,

f~o) =do - pu2 = pa - pu2 (10)
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fi 0)=d 1P[(ei -u) +2(ei U)2 1U2]

=--_---+5p P(ei-u)+2(ei'u)2 u2 (11)

where a is an adjustable parameter. If the ratio of rest and moving parti-
cles is defined as A = do/d, the pressure is determined by the isothermal
equation of state,

p=3d- (1-a)p_ 3
2 A+6p (12)

and the speed of sound is

2 1 - a 3 (13)8s 2 A A+ 6

The viscosity is related to the relaxation time through an equation of the
form

2 T - (14)
8

2.3. CUBIC LATTICE MODEL

A cubic lattice[17] with unit spacing is used on which each node has fourteen
nearest neighbors connected by fourteen links. Particles can only reside on
the nodes and move to their nearest neighbors along these links in the unit
time as shown in Fig.3. Hence, there are two types of moving particles.
Particles of type 1 move along the axes with speed Iel,il = 1 and particle
of type 2 move along the links to the corners with speed 1e2,i = V3/. Rest
particles with speed zero are also allowed at each node.

A suitable equilibrium distribution can be chosen in the following form
for particles of each type

f0) = pa - -pu2 (15)3
f()= 1 1 1

floP) = p0 + 1p(ei" u) + 2p(ei. U)2 - 'pu2 (16)

(0) (1 - 4 - a) 1 1 2 12
p2i = 4 +12p(e 2i. u) + 8p(e 2i u) - -pu (17)

Values of a = 2/9 and 3 = 1/9 are used. The relaxation time is related to
the viscosity by 6v ± 1 (18)

2
where v is the kinematic viscosity measured in lattice units.
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3. Two-dimensional Homogeneous Isotropic Turbulence

3.1. INITIAL AND BOUNDARY CONDITIONS

The initial condition of the vorticity is randomly determined by satisfying
the relation,

E(k) I C-(k1 ,k 2 ) 1k kexp - k (19)2 l'-kl<1/23 H )

where w denotes the vorticity in the Fourier space, k' 2 = k2 + k2, and
k, and k2 are the wave numbers. The periodic boundary conditions are
imposed in the x and y directions. The computational domain is square,
(0,0) ___ (x,y) < (27r,27r).

3.2. LOW REYNOLDS NUMBER SIMULATION

In order to compare the results of the LBGK method with those of the
MOL, numerical simulation using the square lattice model is carried out
for a low Reynolds number. The kinematic viscosity is chosen as v = 0.01.
The number of lattice nodes is 129 x 129 (129 lattice nodes and 128 lattice
units in one side). In this case, the initial integral scale Reynolds number

RL corresponds to RL = 31.9, which is expressed as RL = Q/IV7½. Q and
77 denote the total energy and the enstrophy dissipation rate, which are
defined as

Q j E(k)dk, • = 2v k k 4E(k)dk (20)

Perhaps the most striking verification of the accuracy of the LBGK method
is found in the direct comparison of contour plots of vorticity between the
LBGK method and higher-order MOL at the same physical time. Fig.4
displays comparison of vorticity contours at t = 2.0 between the square
lattice BGK method (solid line) and 10th-order MOL (dashed line). The
vorticity distribution is extremely similar down to detailed structure in the
two simulations. Simulation by using the triangular (FHP) lattice BGK
method is also performed for the same initial condition on lattice nodes. In
Fig.5 comparison of vorticity contour plots at is shown between the square
lattice (solid line) and the FHP lattice (dashed line). Once again, the plots
from the two methods show excellent agreement. In order to investigate
the behavior of statistical quantities, time history of (a) the total energy
Q, (b) the enstrophy Q and (c) the enstrophy dissipation rate q is shown in
Fig.6, where the enstrophy Q is defined as Q = fo k 2E(k)dk. Here Q and
Q are inviscid invariants, and therefore are monotonically decreasing in this
dissipative simulation. The solid line, dotted line, and dashed line indicate
to these quantities for the square lattice model, FHP lattice model, and
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10th-order MOL, respectively. What is evident in Fig.6 is that the LBGK
method tracks the higher-order MOL closely with respect to evolutions of
Q, Q and 77. Wave number spectra of the total energy are also compared in

Fig.7 which clearly displays the excellent match between the three methods.
In the simulation of low Reynolds number case, no significant difference is
observed between the square and triangular lattice models for this resolu-
tion.

3.3. HIGH REYNOLDS NUMBER SIMULATION

As a large-scale direct numerical simulation of high Reynolds number ho-
mogeneous isotropic turbulence, simulation for the case with v = 0.0001
is carried out. This corresponds to the initial integral scale Reynolds num-

ber RL = 25500. The number of lattice nodes is 1025 x 1025. Fig.8 shows
comparison of vorticity contour plots at t = 3.0 between the square lat-
tice BGK method and the 10th-order MOL. Although slight difference in
vorticity contours is noticeable at late time, strikingly similar features can

be found for the LBGK simulation, as compared with the solutions by the
10th-order MOL.

Time history of (a) the total energy Q and (b) the enstrophy dissipation
rate 77 is shown in Fig.9. Since Reynolds number is much higher than the

previous case, decrease in Q is much less than observed in Fig.6(a). In
contrast to Q and Q which are monotonically decreasing in these cases, 77
can be amplified, as much as dissipated, and not monotonic as shown in
Fig.9(b). Wave number spectra of k3E(k) at t = 3.0 are compared in Fig.10.
From this figure it is seen that two methods yield quite a similar answer
in terms of the statistical behavior of the flow. With the present lattice of

1025 x 1025 nodes, the inertial range of two-dimensional turbulence can be
resolved. The spectrum shown in Fig.10 indicates that there is a range of
wave number k < 50 for which k3 E(k) is roughly constant so that E(k) is
proportional to k 3 .

Computational cost of the LBGK method for this high Reynolds number
simulation on SGI POWER ONYX 10000 is compared in table 1 with that
of the 10th-order MOL. As far as efficiency is concerned, the LBGK method

requires less than half CPU time per characteristic time of that of the MOL.

4. Three-dimensional Homogeneous Isotropic Turbulence

4.1. INITIAL AND BOUNDARY CONDITIONS

Three-dimensional decaying turbulence is simulated with a random initial

condition having the energy spectrum;

E2k k- 16 2w Iv 4 eXp [-2(k/kma)2] (21)
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where we set v0 = 1.0 and the peak wave number kmax = 4.75683 for low
Reynolds number case and kmax = 2.37841 for medium Reynolds num-
ber one. The periodic boundary conditions are imposed in the x, y and z
directions. The computational domain is a cube, 0 < (x, y, z) < 27r.

4.2. LOW AND MEDIUM REYNOLDS NUMBER SIMULATIONS

Numerical simulations are carried out for two cases. In the first case the
kinematic viscosity is chosen as v = 0.01189. The initial integral scale and
micro scale Reynolds number is 30 - 45 which corresponds to low Reynolds
number simulation. In the medium Reynolds number case v = 0.0025 is
chosen which corresponds the initial integral scale and micro scale Reynolds
number=340. The number of lattice nodes is 65 x 65 x 65.

Contour surface of the enstrophy at t = 0.5 for the cubic LBGK method
and the MOL for v = 0.01189 are shown in Fig.11(a) and (b) respectively.
The enstrophy Q is defined as

Q(x, Yz)= (W2 + LE) (22)

Plot value is Qpjot = 150. Contour surface of the enstrophy computed by
two methods axe almost indistinguishable. Time history of the total energy
and the enstrophy for medium Reynolds number are compared in Fig. 12(a)
and (b). The former is monotorically decreasing while the latter is ampli-
fied. Wave number dependence of energy spectrum E(k) at t = 0.7 is also
compared in Fig.13. From these figures it is seen that two methods yield
quite a similar results in terms of the statistical behavior of the flow. Com-
putational cost of the LBGK method for low Reynolds number simulation
on a SGI POWER ONYX 10000 is also compared in Table 1 with that of
the 10th-order MOL. As far as efficiency is concerned, the LBGK method
requires 26% less CPU time than that of the MOL. Comparison between
the cubic LBGK method and the MOL shows that the cubic LBGK method
can be an alternative for solving the Navier-Stokes equations.

5. Conclusions

Two- and three-dimensional simulations of decaying homogeneous isotropic
turbulence using the LBGK method have shown that the method is as ac-
curate as the conventional method using the same lattice size. The LBGK
method is able to reproduce the dynamic of decaying turbulence and could
be an alternative for solving the Navier-Stokes equations. Further investi-
gation is needed on the accuracy and efficiency of cubic LBGK model.



DNS USING LATTICE BOLTZMANN METHOD 227

References

1. J.R.Herring, S.A.Orszag, R.H.Kraichman, and D.G.Fox, J. Fluid Mech.,
66, (1974) 417.

2. D.GFox, and S.A.Orszag, L. Comp. Phys., 11, (1973) 612.

3. B.Fornberg, 1997, J. Comp. Phys., 25, (1997) 1.
4. N.Satofuka and H.Nishida, BAIL III, Boole Press, (1984), 291.
5. N.Satofuka and H.Nakamura and H.Nishida, Lecture Notes in Physics

218, Springer-Verlag, Berlin, (1984), 475.
6. H.Nishida and N.Satofuka, International Journal for Numerical Method

in Engineering 34, (1992) 637.
7. H.Nishida and N.Satofuka, Finite Elements in Analysis and Design 16

(1994) 285.
8. U.Frisch, B.Hasslacher and Y.Pomeau. Phys. Rev. Lett. 56, (1986)

1505.
9. G.McNamara and G.Zanetti, Phys. Rev. Lett. 61, (1988) 2332.

10. F.Higuera and J.Jimenez, Europhys, Lett. 9, (1989) 663.

11. F.Higuera and S.Succi, Europhys, Lett. 8, (1989) 517.
12. S.Chen, H.Chen, D.Martinez, and W.H.Matthaeus. Phys. Rev. Lett.

67, (1991) 3776.
13. H.Chen, S.Chen, and W.H.Matthaeus, Phys. Rev. A 45, (1992) 5539.

14. Y.Qian, Ph.D. thesis. de I'Universit e Pierre et Marie Curie. January
1990.

15. Y.Qian, D.d'Humieres, and P. Lallemand, Europhys. Lett. 17(6), (1992)
479.

16. P.L.Bhatnagar, E.P.Gross, and M.Krook. Phys. Rev. 94, (1954) 511.

17. S.Hou, Q.Zou, S.Chen, G.Doolen, and A.C.Cogley. Journal of compu-

tational physics. 118, (1995) 329.
18. N.Satofuka, in: Numerical Properties and Methodologies in Heat Trans-

fer, edited by T.M.Shin, Hemisphere, Washington, DC, (1983) 97.

"", ! / ,, \II --- 4 (,+j--)0 ...... . . 4 1j )

r r

I :1:.I \

(i,))• )( ,(ij+) & Y.c,(+Ij+) - , i -4.... ..'

(il)2• \\1 • (4J 5 6 ','+
""I ' " I "
I .. ..,'. . . . . . .

(i-14 01 -i),)7N4'(--

"-•\(\ . . . .1( +ij -l i -l iDj

Figure 1. Square lattice model Figure 2. Triangular lattice model



228 NOBUYUKI SATOFUKA

. -.. ........................... '

(i .+I)k .

0i+I + (ci.1TJ+

+L Y
sii J k

S....... (.. l.. ...........-lJ) k

Figure3. Cubc latice moel coutoursbetwquaeen)G~qae n
MOL(10th-Mordeh-rr) a .,v=00

(0 1)c

......... .. .
LB K(Jlar

(l0k1) 5- - M I s---MOI.(der) zde)

64ixjT;,*"1 Figure 4. Comparison. of vorticity

Figure 3. Cubic lattice model countours between LBGK(square) and
MOL(l0th-order) at t 2.0, vi = 0.01

Sv = 0.01

- 129X12(129x149)

- 0.75-

0.6 0-5 5.0 1.5 7.0

Time [It
LBGK(sqsuare)

- - - I.HGK(sranSu1Ar) Figure 6(a). Time history of total

Figure 5. Comparison of vorticity energy Q computed by LBGK(square),

countours between LBGK(square) and LBGK(triangular) and MOL(10th-order)

LBGK(triangular) at t = 2.0, v = 0.01 for v = 0.01

--- Y'= 0.01

19 0.01 19 .. 12 9 (129x 149)

0.8--129 x1 2 9 12 149)

0.4 0.2

02 00,0

0.0 0. 0.O 4.0 03 . 1.5 L.0

Time It) Time [It

Figure 6(b). Time history of enstrophy Figure 6(c). Time history of enstrophy

Q computed by LBGK(square), disspation rate q computed by

LBGK(triangular) and MOL(10th-order) LBGK(square), LBGK(triangular) and

for v = 0.01 MOL(10th-order) for v = 0.01



DNS USING LATTICE BOLTZMANN METHOD 229

10*-

S10•-

_- 10•-

- LBGK(square)
10.- LBGK(trlangular)

- - - MOL 10th-orderl

S10"-V = 0.01

129 x 129
10"' -

I 2 4 7 10 20 40

Wave Number [k) LBGK(square)
-- - MOL(O1th-ord&)

Figure 7. Wave number dependence of

energy spectrum E(k) computed by Figure 8. Comparison of vorticity

LBGK(square), LBGK(triangular) and countours between LBGK(square) and

MOL(lOth-order) at t = 1.0, v 0.01 MOL(lth-order) at t = 3.0, v 0.0001

I4

:2 .. | -- O'~~lj-'•

IL73- M Lltmdr

v = 0.=01 2-

1025× IOU
2 4 6 1 is 1i

4 4 ' 4 I 14 • 2 4 4 a N 12

Time It] Time It)

Figure 9(a). Time history of total Figure 9(b). Time history of energy

energy Q computed by LBGK(square) dissipation rate 77 computed by

and MOL(10th-order) for v = 0.001 LBGK(square) and MOL(10th-order) for

V = 0.001

10,-

10-•

---- MLBG(sqtorde)

30
v = 0.0001
1025 x 1025

10•- [

I 10 50 too 500 1000

Wave Number 1k]

Figure 10. Wave number dependence of

energy spectrum kaE(k) computed by Figure 11(a). Enstorophy contours at

LBGK(square) and MOL(10th-order) at t = 0.5 for the cubic LBGK method

t = 3.0, v = 0.0001



230 NOBUYUKI SATOFUKA

1.0-

0.0 042 *A4 '. .8 1.0

TIme

Figure 11(b). Enstorophy contours at Figure 12(a). Time history of total

t = 0.5 for the MOL energy computed by LBGK(cubic) and
MOL for v = 0.0025

1010'

_ _ _ 1::: F-ij.ý
00 0.2 SA4 o.6 0.0 1.10 I I I I I

Time 1.0 2A 4.A 7.0 1.0. 20.0
Wave Number

Figure 12(b). Time history of enstrophy Figure 13. Wave number dependence of
computed by LBGK(cubic) and MOL for setu ~)a .

v=0.0025 setu ~)a .

TABLE 1. Comparison of computational cost

two-dimension three-dimension

LBGK(squa~re) MOL(l0th-order) LBGK(square) MOL(l0th-order)

V(u-
2

) = 0.04 At = 0.001 r(u2 )- 0.01 At = 0.01

4047[time step] 1000[time step] 1019[time step] 100[time step]

t =1.0 t =1.0 t =1.0 t =1.0

63006 136639 8686[sec] 10924[secl
< 1> < 2.17 > < 1> < 1.26 >

15.47[sec/time step] 136.64[sec/time step] 8.52[sec/time step] 109.24[sec/time step]
<1I> < 8.83 > < 1> < 12.82 >


