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Abstract. The immersed-boundary method can be used to simulate flows
around complex geometries within a Cartesian grid. This method has been
used quite extensively in low Reynolds-number flows, and is now being
applied to turbulent flows more frequently. The technique will be discussed,
and three applications of the method will be presented, with increasing
complexity, to illustrate the potential and limitations of the method, and
some of the directions for future work.

1. Introduction

The increase in computer speed achieved over the last few years has made
computational fluid dynamics increasingly useful and widespread as a tool
to analyze and design flow configuration. Complex geometries, however,
present an obstacle even to present-day computers, since the use of body-
fitted meshes (structured or unstructured) significantly increases the cost
of a calculation in terms of both computational speed and memory require-
ments.

An alternative method that may be cost-efficient in many situations is
the “immersed-boundary” method. This technique is based on the intro-
duction of body forces distributed throughout the flow that mimic the effect
that a solid body would have on the fluid. This approach allows the use
of codes in Cartesian coordinates, which present significant advantages, in
terms of speed, accuracy and flexibility, over codes that employ body fitted
grids.

This idea has been widely used in hsemo-dynamics and bio-fluids en-
gineering: two- and three-dimensional calculations of the flow in the heart
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were reported by Peskin [13, 14] and McQueen and Peskin (8, 9]. In these
calculations the motion of the boundary was determined by the fluid it-
self, so that the boundary had to be modeled as a set of elements linked
by springs. In cases in which the boundary motion is known a priori, the
problem can be significantly simplified.

Goldstein et al. [4] proposed a feedback forcing mechanism that forces
the fluid velocity u; to approach the velocity of the solid boundary, V;, on
the boundary itself. Consider the incompressible Navier-Stokes equations:

Ou;

;9_:1% = 0’ (1)
J

Tt g ) = 5L oVt f )

Goldstein et al. [4] assigned a force field

f(-'l:a it "af/ [uz(ms,za Vz(ms,za )] dt' +ﬂf [uz(xs i )_Vi(ms,i,t)],
3)

where oy and By are two negative constants, and z; are the coordinates
of the solid surface. The net effect of this force is to tend to annihilate the
velocity difference u; — V;. The flow, in fact, responds to the forcing as a
damped oscillator (see [4] and [3] for an in-depth discussion of this issue);
the frequency of the oscillator is o |af|'/2, whereas its damping coefficient
is o< B¢/|a|'/2. This implies that, in order to enforce the no-slip condition
effectively, oy and By must have large magnitudes (larger than the highest
frequency in the flow), which may make the equations stiff.
Recently, Mohd-Yusof [11] proposed the “direct forcing method,” which
assigns a force field given by
6 dp

V_ .
fi= (ug z)+"_’_’/v2ui+ T

a z; At ) (4)

(where the dependence on z,; and t has been omitted). This forcing im-
poses directly the desired velocity on the immersed boundary, and has the
advantage (over the feedback forcing method) that it does not require sig-
nificant reductions in the allowable time-step. It was extensively tested in a
staggered finite-difference code by Fadlun et al. [3], who derived an interpo-
lation scheme to be used when the boundary does not coincide with a grid
line. Verzicco et al. [15] applied this method to the large-eddy simulation
of high Reynolds number turbulent flows by calculating the flow inside an
IC engine.

In the present paper additional applications of this method will be pre-
sented, and the potential and limitations of the technique, as well as issues
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Figure 1. Interpolation method used to apply the forcing.

that require further study, will be discussed. After a brief review of the
governing equations and of the numerical scheme used, three test cases will
be shown: a low Reynolds-number flow over a cylinder in the presence of a
moving surface (Wannier [16] flow), the flow over a circular cylinder at low
Reynolds number, and the bypass transition on a flat plate caused by the
interaction between the boundary layer and the wake of a circular cylinder.

2. Problem formulation

Governing the flow are the incompressible Navier-Stokes equations (1-2).
The flow solver is a standard 2nd-order accurate method on a staggered
mesh [1]. The fractional time-step method [2, 6] is used and a 2nd-order
accurate Adams-Bashforth method is employed for the time advancement.
A non-reflecting boundary condition [12] is used at the outflow, and periodic
boundary conditions in the spanwise direction. The inflow and free-stream
conditions depended on the case studied.

The direct forcing (4) was used. Since the immersed body does not
follow a grid line the interpolation method proposed by Fadlun et al. [3] is
used. The forcing is imposed not at the surface itself, but at the first point
outside it (see Fig. 1) and the solid body velocity in (4) is replaced with
the velocity V; obtained by a linear interpolation between the computed
fluid velocity outside the body, u;, and the desired body velocity V;. This
method has several advantages: first, it has been shown to be fully second-
order accurate in time [3]; therefore, it is consistent with the second-order
differencing scheme used by the solver; secondly, since it assumes that the
velocity profile is linear near the body, it implies homogeneous Neumann
boundary conditions for the pressure (see the Appendix in [3] for a full
discussion of this issue). This last feature is very important in the framework
of fractional time-step methods, since it implies that the corrector step does
not result in a modification of the body velocity imposed through the forcing
in the Helmholtz step. On the other hand, the assumption that the velocity
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Figure 2. Wannier flow test case (Wannier 1950). (a) Computational domain and com-
puted streamlines; (b) L, and Lo norms of the error, ¢, for u and v velocity components.
N is the total number of grid points.

profile is linear over the first two layers of cells outside the immersed body
requires the use of a very fine mesh in the vicinity of the body.

3. Results and discussion
3.1. WANNIER FLOW

A straightforward way to verify the accuracy of the proposed methodology
is to compute a flow containing a curved immersed boundary for which
an analytical solution exists. The case considered here is the Stokes flow
around a cylinder in the vicinity of a moving wall (see Fig. 2). An analytical
solution for this case was derived by Wannier [16]. The streamlines for this
flow are shown in Fig. 2a. Three computations on gradually finer uniform
grids (32 x 32, 64 x 64, and 128 x 128) were conducted. The Ly and Ly norms
of the error (the difference between the computed and analytical solution)
are shown in Fig. 2b as a function of the total number of points N. The
error decreases with a —2 slope indicating that the proposed methodology
is second order accurate.

3.2. FLOW OVER A CIRCULAR CYLINDER

The next test case examined is the flow over a circular cylinder at Rep =
UsD/v = 300 (where D is the cylinder diameter and Uy, the free-stream
velocity). Two calculations will be compared: a 2D one that used 400 %200
points in the zz—plane, and a 3D one, with the same mesh in the zz—plane,
and 48 points in y. The computational domain was 60 x 27 x 30, and the
cylinder center was at z, = 10, z. = 15 (all lengths are made dimensionless
by D, all velocities by Uy,). The grid was stretched both in the z— and
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Figure 8. Flow over a circular cylinder, Rep = 300. Velocity statistics. (a) U, (b) W,
{c) {v'v'), (d) (v'w’). Reference data from Ref. [10].

z—directions; the last 1/6 of the domain (which required only 10 grid points
in z) formed a sponge region, used to minimize the upstream propagation of
disturbances due to the convective outflow conditions. A uniform velocity
profile was imposed at the inlet, and slip-wall conditions were applied at
z =0 and z = 30.

The velocity statistics are shown in Fig. 3. Here and in the following the
angle brackets denote averaging in time and in the spanwise direction. The
3D calculation is in very good agreement with the reference data by Mittal
and Balachandar [10]. At this Reynolds number, three-dimensionality is
observed in the wake, which is evidenced in the visualization in Fig. 4,
which shows iso-surfaces of the second invariant of the velocity-gradient
tensor,

1 a’lti an
2 0z; Ox;

1
Q= = =5 (855 = Qi) (5)
(where €);; is the anti-symmetric part of the velocity gradient tensor). The
condition @ > 0 identifies effectively the regions of coherent vorticity {5].
Figure 4 shows the formation of an instability on the initially 2D rollers,
and the presence of quasi-streamwise rib vortices joining the rollers. The
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Figure 4. Flow over a circular cylinder, Rep = 300. Isosurfaces of @} = 0.6.

magnitude of the spanwise Reynolds stresses (v'v'). in this calculation, how-
ever, remained significantly smaller than the other two normal components,
which allowed the 2D calculation to give reasonable results.
The effects of the grid resolution near the obstacle are shown in Fig. 5.
The cell Reynolds number is defined as
(Az? + A2?) (u? + w?)

Rec = v 3 (6)

where u and w are the instantaneous velocities, and Az and Az the grid
spacings. If the mesh is insufficiently fine (Re. > 30), some oscillations
can be observed that initiate along lines at +45° on the cylinder (they
are especially visible in the w contours, Fig. 5b). Refining the grid, thus
reducing Re. reduces the size of this oscillation (Figs. 7a and b). Two-
dimensional interpolation schemes that use both the points indicated by
the diamonds and those indicated by squares in Fig. 6 to determine V;
have also been found (Verzicco, private communication, 2001) to reduce
the amplitude of these oscillations.

3.3. WAKE/BOUNDARY-LAYER INTERACTION

Wakes interact with laminar boundary layers in many applications of en-
gineering interest, for example on the leading edge of multi-component
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Figure 5. Flow over a circular cylinder, Rep = 300. Coarse (200 x 100) 2D calculation.
(a) Contours of the cell Reynolds number; (b) contours of w.
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Figure 6. One-dimensional vs. two-dimensional interpolation stencils.

airfoils, or inside turbo-machinery. The interaction of the turbulent eddies
present in the wake with the boundary layer itself then becomes a primary
driver of the transition process in the boundary layer itself, and may lead
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Figure 7. Flow over a circular cylinder, Rep = 300. Fine (400 x 200) 2D calculation.
(a) Contours of the cell Reynolds number; (b) contours of w.
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Figure 8. Sketch of the wake/boundary-layer configuration.

to transition to turbulence at fairly low Reynolds numbers.

The configuration examined in the present study is sketched in Fig. 8.
A circular cylinder, with its axis normal to the stream is placed above a
flat plate. The cylinder center is at z, = 10, 2, = 3.2, immediately above
the leading-edge of the plate, which was also at z, = 10. As in the previous
case, distances are normalized by D, velocities by U,,. The computational
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domain was 60 x 27 x 20. As for the cylinder calculation, the grid was
stretched both in the z— and z—directions and a sponge region was used.
The Reynolds number based on cylinder diameter was 385. The configu-
ration corresponds to Case 1 in the experimental paper by Kyriakides et
al. [7], who observed significant velocity fluctuations in the boundary layer,
starting from a point approximately six diameters downstream of the cylin-
der. These fluctuations are generated by the large-scale convective motion
of the vortices, and do not die down after the wake has weakened, but de-
velop into a turbulent boundary layer despite the fact that the Reynolds
number is very low.

The distribution of the streamwise Reynolds stress, (u'u'), as a function
of © is shown in Fig. 9. A sudden increase of (u'u’) can be observed to begin
at z = 8, indicating the beginning of transition. This result is consistent
with the observations of Kyriakides et al. [7], who defined the onset of
transition as “the x—location where the velocity signal at the same height
above the plate loses its sinusoidal character”, and found that transition
occurs at x = 7.4.

The velocity profiles, shown in Fig. 10a at several locations, initially
resemble a Blasius profile merging into a wake near the cylinder. As the
wake widens and interacts with the boundary layer, a logarithmic layer
begins to establish itself, indicative of transition towards turbulent flow.
This transitional behavior is also observed in the trace of the Reynolds
stress tensor, ¢ (equal to twice the turbulent kinetic energy), which in
the latter sections establishes a turbulent-like distribution, with a peak of
magnitude 7 — 87, at 27 =~ 10 — 12. It should be noted that this quasi-
turbulent state is achieved at very low Reynolds number: the boundary-
layer thickness & (defined as the distance above the plate at which the first
maximum of the velocity profile occurs) is approximately 50-70 wall units.

A visualization of the flow is shown in Fig. 11. The structure of the
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Figure 9. Wake/boundary-layer interaction. {u'u’) distribution at z = 0.18.
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Figure 10. Wake/boundary-layer interaction. Turbulent statistics. Top: mean velocity
profile; bottom: ¢* = (u}u}).

cylinder wake is similar to that highlighted in Fig. 4, with strong spanwise
rollers that exhibit 3D instabilities and eventually break up, and smaller
quasi-streamwise vortices in the braid region. The contours of streamwise
velocity fluctuation u’ on a plane parallel to the wall show significant levels
of fluctuations, especially near kinks in the rollers belonging to the lower
row. Quasi-streamwise streaks are formed around x = 15, whose spacing is
approximately 100 wall units.

4. Conclusions

The immersed-boundary technique has been presented and discussed. Il-
lustrative results from three simulations indicate the potential of this tech-
nique, which allows the calculation of flows around complex geometries
without requiring a body-fitted grid.

If appropriate interpolation methods are used when the body does not
coincide with a grid line, the method is second-order accurate. However,
some care must be taken in the discretization of the flow field, especially in
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Figure 11.  Wake/boundary-layer interaction. Isosurfaces of = 0.4 and contours of v’
in the z = 0.18 plane. Top: perspective view; bottom: view from above.

the vicinity of the body. We have observed the development of numerical os-
cillations when the cell Reynolds-number exceeded values of approximately
30. These oscillations did not grow or change position in time, and their
effect on the flow field downstream of the obstacle was limited in the cases
studied. This was observed, for instance, in calculations of the flow around
the cylinder at Rep = 3500 were carried out in which the grid could not be
sufficiently refined to satisfy the cell-Reynolds-number requirement. How-
ever, it is not known whether these oscillations might give rise to instabili-
ties in other geometries, or at higher Reynolds numbers. The development
of more accurate, multi-dimensional interpolation schemes might be bene-
ficial in this respect. The use of multi-block methods, or embedded grids,
could also alleviate this problem.

If these numerical schemes can be overcome, the immersed boundary
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method appears to be a useful tool for the simulation of flows in complex
geometries at moderate or high Reynolds numbers. This is confirmed by
the increasing number of studies using this method that are appearing in
the literature.

Acknowledgments

Research supported by the NASA Langley research Center under Grant
NAG12285 monitored by Drs. Craig L. Streett and Meelan M. Choudhari.

References

1. Balaras, E. 1995 Ph. D. Thesis, EPFL (Federal Iustitute of Technology—Lausanne,
Switzerland).
2. Chorin, A.J. 1968 Math. Comput. 22, 745.
3. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J. 2000 J. Comput. Phys. 161
35.
4. Goldstein, D., Handler. R. Sirovich, L. 1993 J. Comput. Phys. 105, 354-366.
5. Hunt, J.C.R., Wray, A.A. and Moin, P. 1988 In Center for Turbulence Research,
Proc. Summer Program 1988, 193.
6. Kim, J. and Moin, P. 1985 J. Comput. Phys. 59 308.
7. Kyriakides N.K., Kastrinakis, E.G., Nychas, S.G., Goulas, A. 1996 Proc. Inst. Mech.
Eng. 210, 167.
8. McQueen, D.M., Peskin, C.S. 1989 J. Comput. Phys. 82 289.
9. McQueen D.M., Peskin, C.S. 1997 J. Supercomput. 11 213.
10. Mittal, R. and Balachandar, S. 1995 Phys. Fluids 7, 1841.
11. Mohd-Yusof, J. 1997 in CTR Annu. Res. Briefs 1997, NASA Ames/Stanford Uni-
versity, 317.
12. Orlanski, I. 1976 J. Comput. Phys. 21, 251.
13. Peskin, C.S. 1972 J. Comput. Phys. 10 252.
14. Peskin, C.S. 1977 J. Comput. Phys. 25 220.
15. Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D. 2000 ATAA J. 38 427.
16. Wannier, G. H. 1950 Quart. Applied Mathematics 8 1.



