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Abstract: Advanced condition monitoring systems use pattern recognition and
automated reasoning on features extracted from sensor data to assess the current health of
a component. This paper will evaluate pattern recognition techniques for classifying the
“stage of fault” using transitional failure data for commercial grade gearboxes. Features
will be extracted from accelerometer data obtained on the Mechanical Diagnostic Testbed
(MDTB) at Penn State Applied Research Lab. The ARL CBM Features toolbox, a
MATLAB-based toolbox containing most of the traditional HUMS features and several
novel features, will be used to perform feature extraction. Several classifiers and training
methods will be evaluated, as well as the effect of using different dimension-reduction
techniques on classification. The results obtained using the transitional failure data sets
will contribute to enhanced health monitoring techniques and improved machinery health
prognostic estimates.
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Introduction: Penn State University Applied Research Laboratory (ARL) is contributing
to the diagnostics and prognostics development for aircraft systems using statistical
pattern recognition and sensor fusion. Analysis was conducted using a software package
developed by ARL called the Shell Enhanced Pattern Recognition Advanced Toolbox
(SEPARAT). For this analysis, features were extracted from gearbox run-to-failure
accelerometer data acquired on the Mechanical Diagnostics Test Bed (MDTB) at ARL.
Based upon borescope ground truth, the data was segmented into three classes: no failure,
1-2 teeth broken, and 2-8 teeth broken. Various classifiers, dimensionality reduction
techniques, and training methods were evaluated for their ability to classify stage of fault.

Feature Extraction: In principle, information concerning the relative condition of the
monitored machine can be extracted from the vibration signature, and inferences can be
made about the health by comparing the vibration signal with previous signals to identify
any anomalous conditions that may be occurring. In practice, however, such direct
comparisons are not effective mainly due to the large variations between subsequent
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signals. Instead, several more useful techniques have been developed over the years that
involve feature extraction from the vibration signature [9]. Generally these features are
more stable and well behaved than the raw signature data itself. In addition, the features
constitute a reduced data set, because one feature value may represent an entire snapshot
of data, thus facilitating additional analysis such as pattern recognition for diagnostics
and feature tracking for prognostics. Moreover, the use of feature values instead of raw
vibration data will become extremely important as wireless applications, with greater
bandwidth restrictions, become more widely used.

The feature extraction method may require several steps, depending on the type of feature
being calculated. Some features are calculated using the “conditioned” raw signal, while
others use a time-synchronous averaged signal that has been filtered to remove the
“common” spectral components. ARL developed a CBM Features Toolbox that allows
these features to be calculated systematically.

Pattern Recognition Overview: The classification techniques used for this analysis are
included in SEPARAT as well as neural networks, Gaussian classifiers, statistical
analysis and feature reduction techniques. A discussion of some of the key pattern
recognition terminology is provided below.

Feature extraction, as discussed above, is the process of reducing measured signals into
feature vectors. Classifier design, also called training, is the process of determining
feature space partitions so that unlabeled vectors can be given a class label. Evaluation is
the process of testing the design of both the classifier and its inputs. If the evaluation is
unsatisfactory, other classifier structures, features and/or attributes, must be sought;
otherwise, a satisfactory evaluation indicates the selected attributes, features, and
classifier can be incorporated into the application.

Optimal Classification: The goal of pattern classification is to assign a physical object or
process to one of ¢ pre-defined classes [1]. The idealized Bayes decision strategy yields a
classifier that is optimal (i.e., the classification error rate is minimal). This concept is
paramount to pattern classification regardless of the particular technique used. Let x be a
random variable with d-components (features) which obeys the class conditional
probability density function p(x|w;), where w; represents one of ¢ possible objects or
processes that are of interest, and P(y) represents the a priori probability that w; occurs.
The state-conditional a posteriori probability can be expressed by Bayes rule [1]:

r(x| o, )P(wi)

P(o|x)= , 0]
p(x)
where
p(x)=Y p(xjo,)P(m,). (2)
i=1
The optimal decision rule with the smallest possible error is given as [1]:
Decide that x belongs to class o iff P(wx) > P(wylx) for all j # i. ?3)
An equivalent decision rule is given by:
Decide that x belongs to class oy iff g(x) > gi(x) for all j# i 4)
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where the discriminants, gi(x), are defined in the present context of the optimal classifier
as

sl )P(0)

i 5)
p(x) (

gi(x) = P((‘oilx) =

The decision boundaries between the classes labeled o; and w; consist of the points in
feature space where gi(X) = gi(x). Decision boundaries partition d-dimensional feature
space into the decision regions that are used to classify unlabeled feature vectors.

Discriminant Functions: Because Eq. (4) compares all discriminant function outputs to
find the maximum, only the relative values of the outputs are important. Therefore,
equivalent changes can be made to each discriminant function without affecting the
classification results. In other words, the decision boundaries are not changed. As long
as each discriminant function is changed in the same way, the classification results will
not be changed. Thus Eq. (5) can be simplified by removing the scaling constant p(x)
while giving the same classification results [1]:

g% = p(x|o,)P(0,). (6)

The Bayes decision rule defines the lowest possible error rate for a given problem.
However, the ideal Bayes approach is not truly practical because it requires a priori
knowledge of the distribution and its parameters for each class, which are rarely, if ever,
known [1]. In practice, one must either assume class-conditional density models and
estimate their parameters or estimate the probability densities, either explicitly or
implicitly, from observed data. There are several well-known statistical techniques
available. In general, they can be grouped as parametric or nonparametric. Parametric
approaches assume that the functional form of the class-conditional density functions,
which are described by some parameters, are known. Nonparametric approaches do not
assume anything about class-conditional distributions.

Nonparametric Approaches: Some approaches, such as the minimum-distance classifier,
have widely been used because they offer intuitive appeal and computational simplicity.
Other nonparametric approaches, such as the minimum-squared-etror algorithm, use the
data to optimize a family of linear discriminant functions. When using nonparametric
classifiers, class labels are traditionally assigned based on formula (4).

Minimum distance classifiers are widely referenced throughout the literature [1,2,6,7].
With this type of classifier, unknown feature vectors are assigned the class membership
of the nearest sample mean. The discriminant function can be written as

LR
&(x)= —(x _mi) G, l(x_mi)
=-x'G/'x+2x'G 'x-m/G'm,
where G; is a positive definite symmetric weighting matrix. Often the sample covariance
matrices are used for Gj; the resulting classifier is quadratic. Another variation of the

minimum distance classifier involves using the same weighting matrix is used for each
class (i.e., Gi = G), which results in a linear discriminant function. Using a common

M
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weighting matrix in Eq. (7), multiplying by %, and dropping the common quadratic term,
the linear minimum-distance discriminant function is obtained:

1
g(x)=x'G'm, —Eij“m, : ®)

Two commonly used weighting matrices are the identity matrix and the pooled
covariance matrix, which results in the Euclidean and Fisher minimum-distance
classifiers, respectively [1,6,7]. Minimum-distance classifiers are trivial to train and
implement. Training only requires calculation of the sample means and weighting
matrices. Classification only requires calculation of Eq. (7) or Eq. (8) fori=1,2, ..., ¢,
followed by comparisons of the discriminant values (Eq. 4).

The linear classifier is particularly attractive because of its computational simplicity
during classification. In some cases, linear discriminant functions arise naturally due to
the distribution of the data. The minimum-distance classifier is linear when common
weighting matrices are used. The following paragraphs discuss a case were the structure
is assumed linear and the weights are found based on that assumption. The general form
of the linear discriminant function is given by

& (x) =x'w, +w,, O]
where w; and w, are the weight vector and bias term for the ith class respectively. A
family of linear discriminants can be written as

g(x)=[g,(x) gx) - g(x)

] [ - [

= yW
where y is the 1-by-(d+1) augmented feature vector and W is the (d+1)-by-c weight
matrix. One method of training the discriminants is to solve the matrix equation

Y, B,
v | |8

yw=|w=||=8, an
Y(‘ BL‘

where Y is the n;-by-(d+1) matrix of augmented training samples for the ith class, and B
is the corresponding n;-by-c target matrix where the ith column contains all ones and the
other elements are zeros [1]. Equation (11) can be solved using the pseudo-inverse of Y
[1,4]:

W=Y'B. (12)
This approach minimizes the trace of squared error matrix (YW-B)(YW-B); the resulting
discriminant functions used in conjunction with (Eq. 4) are called the minimum-squared-
erfor classifiers.

Error Rate Estimation: Choosing which classifier to use for a specific problem is often
difficult. To aid in the selection of an appropriate classifier, rigorous analyses can be
made to compare the performance of competing designs. In general, etror estimation is
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accomplished by designing a classifier on training data, labeling test data, and counting
the number of errors (mislabeled samples) to estimate the error rate e. Given that n(w;) is
the number of samples from the class @y incorrectly labeled by the classifier, a typical
error estimate is given by

C
e= ZMP((DI) 13)

i=1 ni
Several methods can be used to segment available data into training and test sets. When
using the resubstitution procedure, the classifier is trained and tested using the same data.
This results in an optimistically biased error rate [1,2,6,7]. The resubstitution error rate
estimator is good for finding a lower bound on the Bayes error rate [2]. The available
data can be split into two mutually exclusive sets for training and testing. This is known
as the holdout procedure, which results in an unbiased estimate of the error rate [2].
However, using the holdout procedure requires the data to be segmented either manually
or by some clustering algorithm [2]. In many situations, collecting data is very expensive
which results in small data sets. One technique that is useful for small data sets is the
leave-one-out procedure [1,2,6,7]. In this procedure, all but one of the available training
samples is used to train a classifier. The classifier is then tested with the sample that was
left out. This process is repeated until all of the available training samples have had their
turn as a test sample. The leave-one-out error estimator is nearly unbiased but has a large
variance [6,7].

Experimental Facilities: Without a recorded progression to failure, the ability to
perform prognostics, the capability to predict remaining useful life, is nearly impossible.
This need for high-fidelity transitional data was identified several years ago at ARL.
Since then several test beds have been developed to address this shortcoming. The
MDTB was created to provide a realistic test stand that effectively represents an
operational environment and is able to bridge the chasm between typical university-scale
test facilities and real-world applications.

The MDTB was constructed to collect calibrated, transitional data of both gear and
bearing failures for commercial gearboxes and transmissions. The MDTB is
instrumented with 52 sensors including 31 thermocouples, three internal temperature
probes, seven single-axis accelerometers, a tri-axial accelerometer, a microphone, an
acoustic emission sensor, an oil analysis sensor, a tachometer, two sets of torque and
speed sensors, an infrared (IR) camera, and a borescope. Data are sampled using 16-
channel, 16-bit DAQ boards. The sampling rate for the accelerometers is 20 kHz. Ten
second snapshots of data are stored in a binary format to a PC. A detailed description of
the PSU-ARL MDTB can be found in Referencel2.

Data and Class Selection: As stated previously, the data to be used for the current effort

should facilitate the development of prognostics by allowing features to be tracked during
failure progression.
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At the same time, if the data is to be realistically divided into classes, the system health
status must be known by some “ground truth” capability. Recognizing this, researchers
selected the transitional data from MDTB Run 14 for analysis. Run 14 employed a 3.33-
ratio, single-reduction helical gearbox, and the test culminated with eight broken
gearteeth. The ground truth for gearbox health is provided by the several borescope
images that were obtained (Figure 1). Measurements were made and recorded
periodically throughout the run using a variety of torque loads (an excerpt is shown in
Figure 1) over the entire accelerated fault evolution. Accelerometer 3 (axial direction)
was used for our analysis.

Run 14 Torque Variations
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Figure 1: Run 14 Torque Variations, with Borescope Images Showing Gearbox Condition

The MDTB borescope data provides state points on the damage accumulation curve, but
does not clearly identify the transition points (the ground truth occurs some time after the
actual damage event). The data was divided into three classes: 1) no damage (snapshots
0-295), 2) 1-2 broken teeth (snapshots 296-328), 3) 2-8 broken teeth (snapshots 329-338).
Although the faults began to occur before the borescope images were taken, basing the
class boundaries solely on the borescope images is probably adequate, given the limited
ground truth knowledge.

The features used in this analysis include: FM4, M8A, NA4*, INTR, INTSRC, and
INTPK. FM4, M8A, and NA4* are common features that can be readily found in the
literature [9,10]; the preprocessing is described in Reference 9. INTR (RMS), INTSRC
(standard deviation of the rectified signal) and INTPK (spectrum peak magnitude of
output shaft frequency) are features that were calculated on the ARL-developed
interstitial signal [11].

242



Classification Results: Multiple cases were explored including: 1) using only the
kurtosis to provide a baseline for the other results, 2) using six advanced features (FM4,
NA4*, M8A, INTR, INTSRC, and INTPK) for the entire data set, and 3) using the six
advanced features for only the high-torque data. Within each of these categories, a
variety of classification and training methods were utilized. The advantage of using the
advanced features should be apparent by the improvement in the error rate over the
baseline.

Three classification methods are available in the SEPARAT toolbox: Parametric,
Nonparametric, and Neural Network. The Nonparametric methods were used for the
current investigation because there was not a good fit of the data with the built-in
parametric technique (e.g., Gaussian classifier).

Baseline: Classification Using Kurtosis Alone: As can be seen in Table 1, using Kurtosis
alone results in very high error rates (greater than 38%). Recall that the resubstitution
training method provides a lower bound on the error and, thus, is the optimal result that
can be achieved.

Table 1: Classification Errors when using Kurtosis Alone.

Classification Technique | Training/Testing Method Error Rate
Fisher Resubstitution 38.83%
MDE Resubstitution 38.83%
MSE Linear Resubstitution 66.86%
MSE Quadratic Resubstitution 66.82%
Quadratic Resubstitution 38.83%

Classification Using Advanced Features on the Entire Data Set: Results are provided in

Table 2 for simultaneous consideration of the six advanced features (classification using
feature fusion). The results shown were obtained using resubstitution training, while the
confusion matrix and error rate in Table 3 is for Leave-One-Out (LOO) training and the
Minimum-Squared Error (MSE) classifier. We also transformed the six features into two
space using a Fisher mapping technique, which yielded results slightly worse than in six
space.

Given that resubstitution may be an optimistically biased method, an additional
evaluation was performed on the most accurate classifier using LOO training to provide
more realistic results. Results from this training method yielded a larger, yet more
realistic error than was achieved using resubstitution (Table 3).
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Table 2: Classification Errors using the Advanced Features

Classification Technique | Training/Testing Method Error Rate
Fisher Resubstitution 10.83%
MDE Resubstitution 24.92%
MSE Linear Resubstitution 16.79%
MSE Quadratic Resubstitution 6.67%
Quadratic Resubstitution 9.10%

Table 3: Confusion Matrix for MSE Quadratic Classifier using LOO Training Method
and Advanced Features (Overall error = 18.63%)

Class 1 Class 2 Class 3
Class 1 277 0 2
Class 2 0 28 5
Class 3 1 3 6

Feature Reduction: In many instances, multiple features will have a similar information
basis and will not add significantly to the classification effectiveness. SEPARAT has the
capability of ranking the features in terms of their contribution to class separability by
exhaustively enumerating all possible combinations of features and noting which subsets
maximize a selected criterion function (e.g., Fisher’s criterion). The number of features
to be included, r, is then selected by observing the plot and looking for a point where
additional features do not seem to increase the criterion function. The vertical line is then
dragged to a position between the ™ and r'+1 points on the curve to choose the first r
features within the ranking.

Figure 2 (left) is an output of SEPARAT that shows a ranking of the six features using
Fisher’s criterion. The figure shows that the use of more than the first three ranked
features may not add significantly to the results and, thus, may not significantly impact
the results. When using only the three highest ranked features (FM4, NA4*, M8A), the
error increased from 6.67% (from fusion of the six features) to 13.58% (fusion of the
three features). As the slope of the features in the feature ranking criterion plot
approaches zero, the impact of these additional features on the results will diminish.

An additional evaluation was performed to map the six features into two space using the
Fisher mapping technique. These results show that the six features can be transformed
into two space with a resulting classification error of 10.83% using the LOO training
method.

Figure 2 (right) shows the decision boundary results for this evaluation. This figure is
useful for visualizing the distance between each classification point and the decision
boundaries. In this case, significant overlap occurs between classes 2 and 3, which can
be reasonably expected. Because the ground truth used to separate the classes is not
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associated with a specific discrete degradation event, one should expect cross-over of
classification in the neighborhood of the class boundary.
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Figure 2: (Left) Feature Reduction Criterion Function. (Right) Decision Boundaries for
Mapped Fisher in two-space.

Classification using Advanced Features and High Torque: The classification was repeated
with a significantly truncated data set; using only the snapshots associated with high
operational torque values. Various classifiers using the six advanced features were used,
as well as classification using the Fisher mapping from six to two space. The results
obtained using the truncated data set are provided below in Table 4.

Table 4 : Classification Error Rates for High Torque data

Classification Training/Testing Error Rate
Technique Method
Fisher Resubstitution 5.28%
Advanced MDE Resubstitution 21.39%
Features MSE Linear Resubstitution 13.06%
MSE Quadratic Resubstitution 11.94%
Fisher Fisher Resubstitution 4.17%
Mapping

These results show very successful classification when only the high torque data is used
for classification: less than 6% error using Fisher classifier and less than 5% error when
the features are mapped into two space. These results demonstrate the advantage of
identifying operational influences on the features, and then using this information to
enhance the classification.
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Conclusion: The results of the SEPARAT analysis show that classification performance
can be improved by using some advanced diagnostic features and accounting for
operational parameter (e.g., torque) changes during the failure progression. The effects
of using a reduced set of features on the classification performance were evaluated using
feature ranking and reduction methods as well as feature mappings from six space into a
reduced feature space. These analysis results show the relative improvements that could
potentially be gained by incorporating advanced features and mapping techniques into the
classification scheme. The development of an optimal classification scheme would
require a more critical selection of diagnostic features than those used herein.

Acknowledgements: This work was supported by the Office of Naval Research under
the Accelerated Capabilities Initiative in Human Information Management through a
subcontract by CHI Systems, Inc. (CHI-9803-002). The content of the information does
not necessarily reflect the position or policy of the Government, and no official
endorsement should be inferred.

References:

1. R. O.Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley &
Sons, NY, 1973.

2. K. Fukunaga, Statistical Pattern Recognition, 2%ed., Academic Press, San Diego,
1990.

3. J. P. Hoffbeck and D. A. Landgrebe, “Covariance Matrix Estimation and
Classification With Limited Training Data,” IEEFE Trans. Pattern Anal. Machine
Intell., Vol. 18, No. 7, pp. 763-767, July 1996.

4. G. E. Golub and C. H. Van Loan, Matrix Computations, 29ed., The Johns Hopkins
University Press, Baltimore, 1993.

5. K. Jain and M. D. Ramaswami, “Classifier Design with Parzen Windows,” in Pattern
Recognition and Artificial Intelligence, pp. 211-228, E. S. Gelsema and L. N. Kanal,
eds. Elsevier Science Publishers B.V. (North-Holland), 1988.

6. K. Jain, R. C. Dubes, and C. C. Chen, “Bootstrap Techniques for Error Estimation,”
IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-9, NO. 5, pp. 628-633,
September 1987.

7. S. J. Raudys and A. K. Jain, “Small Sample Size Effects in Statistical Pattern
Recognition: Recommendations for Practitioners,” IEEE Trans. Pattern Anal.
Machine Intell., Vol. 13, No. 3, pp. 252-264, March 1991.

8. E. Parzen, “On Estimation of a Probability Density Function and Mode,” Ann. Math.
Stat., 33, pp. 1065-1076, September 1962.

9. McClintic, K., et al, Residual and Difference Feature Analysis with Transitional
Gearbox Data, 54th Meeting of the MFPT, Virginia, May 2000.

10. Lebold, M., et al, Review of Vibration Analysis Methods for Gearbox Diagnostics
and Prognostics, 54™ Meeting of the MFPT, Virginia, May 2000.

11. Maynard, K.P., Interstitial Processing: The Application of Noise Processing to Gear
Fault Detection, Proceedings of International Conference on Condition Monitoring,
Swansea, UK, 12-15 April 1999.

12. Byington, C.S., Kozlowski, J.D., "Transitional Data for Estimation of Gearbox
Remaining Useful Life", 51st Meeting of the Society for Machinery Failure
Prevention Technology (MFPT), April 1997.

246



