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Abstract. We discuss the effect of virtual intermediate localized states on inter-grain tunneling that
controls conduction in granular conductors on the insulating side of the metal—insulator transition.
It is shown that intermediate states can substantially increase inter-grain tunneling transition prob-
abilities and give rise to the conductivity temperature dependence of the form Ino ~ —(Tp/T)*,
where x 2 0.4, and to a large enhancement of the conductivity.

Introduction

Granular conductors are finely divided mixtures of a conducting and nonconducting phases;
granular metals with characteristic grain sizes in the nanometer range are most commonly
studied. It has been established a long time ago that on the insulating side of the metal-
insulator transition, the conductivity of many of these materials in a wide temperature range
is small and is well described by

o ~exp{—(To/ T}, (D

where Ty is a parameter and the exponent is x < 1 (usually x ~ 0.5) (see [1-3]). Such
behavior was observed in cermets, discontinuous metal films, granular Fe-SiO; films,
heavily doped and organic semiconductors and other materials.

Numerous theories were proposed to explain the dependence (1). Practically all theories
agree that the conduction mechanism in granular metals in the dielectric regime is activated
tunneling (hopping) between grains with disorder in grain size and inter-grain separation. If
hopping is restricted to near neighbors only [4-6], the conductivity temperature dependence
(1) can be obtained if there exists some special structural correlation between the grain size
d and inter-grain separation w, ¢.g., w/d = const [4]. The analysis of Adkins [7] showed
that there is no clear correlation between d and w; the implication is that variable-range
hopping must be taking place. For an almost constant density of states, the standard
argument gives the Mott law with x = 1/4 at low temperatures. Assuming for granular
metals the quadratic Coulomb gap atthe Fermi level [8], one obtains Eq. (1) correspondingto
the Efros—Shklovskii law [9] often observed in doped semiconductors at low temperatures.

It was noted however that there are substantial difficulties in explaining the available
experimental data by using the Coulomb gap model. The data for different types of granular
metal systems were analyzed in [3] using this model. The estimated hop distance appeared
to be too small for variable-range hopping to be effective. Moreover, fitting of magnitude
of the measured conductivity required much lower values of « than those expected on
the basis of the known electronic structure of the materials. In [8], the authors have
attempted to improve the theory replacing the wave function decay parameter o by the
effective parameter «,,, ~ aw/(w + d), where w is the average thickness of the insulating
layer between adjoining grains and d is the grain diameter. This ad hoc assumption was
not consistently justified but even with the use of this assumption, the explanation of
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the observed temperature variation of the conductivity still appears to be difficult [3, 7].
Moreover, under typical experimental conditions the Coulomb gap effects are not expected
to be important for granular metals. Indeed, the interaction is appreciably reduced by
screening, the estimated hop distances are not large and the temperatures at which the
dependence (1) 1s observed are too high. Accordingly, in what follows we do not consider
mter-site correlations that produce the Coulomb gap. We discuss a different approach to
the theory of conduction in granular metals related to the role of intermediate virtual states.

1. Effect of virtual states on distant-neighbor transition rates

In accordance with the standard approach, we assume that the conduction mechanism is
inelastic tunneling (hopping) between states localized at different grains. The intergrain
transition probabilities depend on the overlap of wave functions of different grains and
hence on the edge-to-edge separation between the grains; for near grains it can be much
smaller than the grain size. So we have a system with hopping sites of extended size;
an example of such systems is a superlattice with intentional disorder. It was shown {10,
11] that when calculating distant-site transition rates, important contributions to transition
rates can come from transitions involving intermediate virtual states. In what follows we
demonstrate that virtual states also play an important role for distant-neighbor transitions
in granular conductors.

For phonon-assisted single-electron transitions, the matrix element for phonon-assisted
transitions between a given grain and a grain lying in the nth coordination sphere is ex-
pressed as a sum over different paths involving n — 1 virtual intermediate states (n — 1 steps
corresponding to coherent tunneling and one step with phonon absorption or emission).
In analogy with [11] it can be shown that the contribution of direct inelastic tunneling
between distant initial and final grains can be neglected compared to the process involving
virtual states; the ratio of the corresponding contributions to the transition rate is of the
order of (AE /1p)*" =1 exp {—2ag(wap — nw)}, AE is a characteristic energy difference
of the levels of neighboring grains, #; is the preexponential factor in the transfer integral,
wqp 18 the edge-to-edge separation between the initial and final grains and w is the average
separation between the near grains. For large grains and narrow inter-grain barriers, we
have w,p >> nw and this ratio is small due to the exponential gain in tunneling distance.

2. Percolation arguments

As in the standard hopping theory, the conductivity problem can be reduced to finding the
resistance of the equivalent random network, where the sites correspond to grains and the
conductances connecting sites i and j canbe writtenas G;; = Go exp (—2aS;; — E;;j/kT),
where G isthe preexponential factor that only weakly (nonexponentially) depends on inter-
site separations and grain energy levels, §;; is the total tunneling distance, S;; = nw, E;; =
|Ej — p]+|E; — p| + | E; — E | and E; are effective one-particle energy levels introduced
in a way similar to that used in the theory of multivalent defects in semiconductors [12].
Here the difference from the standard expression for inter-grain conductance is that due to
large grain size, for distant grains / and j we have S;; < w;j.

If the scatter in transition rates is large, then we can apply the standard percolative
arguments. We say that for some fixed G = Ggexp(—n), any two sites i and j are
bonded if G;; > G, ie., if 2aS;; + E;j/kT < n. The critical value of 1 corresponding
to the percolation threshold can be estimated by the bonding criterion [13] stating that the
threshold corresponds to the condition that the average number of bonds per site v attains
some critical value v,.
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To estimate the number of bonds, we must know the distribution of energy levels E; of
localized states in the energy domain near the Fermi level taking account of both confine-
ment and Coulomb interaction effects. Due to weak overlap of localized wave functions
of different grains, to a good approximation we can assume that the level positions for
different sites are uncorrelated (see [14]).

The one-electron energy spectrum can be exactly calculated for an ideal spherical quan-
tum dot in the absence of intra-site correlations [16]. Both the average interlevel distance
and the average level degeneracy increase with energy; random fluctuations in grain shape
as well as variations of work function for different crystallographic faces lift the level de-
generacy [15, 14]. If the characteristic level splitting is larger than the level spacing for
a spherical dot at the Fermi level, then in the relevant energy range the level distribution
is practically uniform, and the effective density of states (per grain) for conductivity gy is
practically constant in the region of interest near the Fermi level. In this case the average
number of bonds per site is easily evaluated.

In the continuous limit, for distant coordination spheres, we have for the average number
of bonds per site v = f dedRpof (n — 2an(R)s — ¢/kT), where R is the position vector
of the final grain, pp = (r/vg) po, r 1s the volume fraction of metal, vy is the average grain
volume and n(R) is the number of the coordination sphere. Due to large grain size, in
granular metals there is strong correlation in spatial positions of the grains preserving a
short-range order in the spatial arrangement of grains. So to find the function n(R) of the
dependence of the radius R, of the nth coordination sphere on 7, we can use a model of
regular close packed structures. For a regular close packings of spheres (f.c.c. and b.c.c.
structures), the variation of R, versus nth is quite well approximated by R, ~ d - n®,
where B & 0.5. Using this, we can evaluate the integral in the expression for v; then by
the bonding criterion, we obtain for the conductivity Eq. (1), where x = 1/(1 + 38) and

Qas)3F

Ty = (B/)——5

(2)
Here B = 15v./167 is a constant; setting v. = 1.5 (see [9]), we obtain B ~ 0.45.

3. Discussion

For 8 = 0.5 we have x = 0.4, 1.e. we obtain the conductivity variation of the form (1) that
is close to that usually observed experimentally.

By Eq. (2), we can estimate the values of material parameters. The data for a Ni-SiO»
film with r = 0.24 produced by cosputtering [1] can be approximated by Eq. (1) with
Ty = 6 - 10 K. The value of / is related to the characteristic interlevel spacing A = 1/5.
Taking A = 50meV [14], from (2) we derive 2as = 5. For the estimated barrier width
§ = 0, 7nm, we have the decay length of about 3 A, which is reasonable.

Thus virtual states give rise to a substantial increase in inter-grain transition probabilities
and to a temperature dependence of the conductivity of the form (1), where x ~ 0.4, It
should be noted that this dependence is obtained for a model of variable-range hopping in
the absence of Coulomb gap effects and with no appreciable energy disorder.
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