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Langevin method for shot noise in single-electron tunneling
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Abstract.  The shot noise in correlated single-electron tunneling can be calculated using the
Langevin approach. It is equivalent to the Fokker—Plank-type approach in the “orthodox” frame-
work, however, the advantage is a natural possibility to describe also the fluctuations in the quantum
frequency range.

Correlated single-electron tunneling | | | remains an attractive topic during last decade.
The theoretical study of the shot noise in this regime is interesting because the noise reflects
rather directly the correlations in the charge transport, and also because the noise determines
the ultimate sensitivity of single-electron devices.

The shot noise in single-electron tunneling is due to the randomness of tunneling events.
The earlier developed formalism [ -] of noise calculation is of the Fokker—Plank type and is
based on the deterministic master equation of “orthodox” theory| - | (we assume sufficiently
large tunnel resistances, R; > h/ e%):

6=To, ey

where the element o;, of the vector o is the probability to find the system in the charge state
n = {ny, ...np} (which is characterized by the numbers n; of excess electrons in each of L
internal nodes of the system) and

T = D = S Z Tien, Fypen = Z FI{’! <« (2)
k J

where I', ., are the corresponding tunneling rates and the summation over the junction
number j is necessary when an electron can tunnel to (from) an internal node from (to)
different external electrodes.

To find the mutual spectral density for two processes X (¢) and Y () we can calculate first
the correlation function Kxy (1) = (X (¢+1)Y (¢)) — (X) (Y) (brackets denote the averaging
over time) and then take the Fourier transform Syy(w) =2 fj;o Kxy(m)expiwt)dr. If
both X and Y are functions of the charge state n (for example, potential of a node) then the
correlation function is given by the simple expression

Kxy(t) = 0(r) Y X(m)o(r,mn) Y () 03" +6(=1) Y _ Y (m)o(m, —t|n)
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where o (t, m|n) is the retarded Green’s function of Eq. (1) being the probability to find
the system in the state m atr = v > 0 if at# = O it was in the state n, (X) = >_, X (n)o;}’,
and o' is the stationary distribution, F'e® =0, Y, o3 = 1.
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However, if X and/or Y represent the current through a tunnel junction or in an ex-
ternal lead, Eq. (3) should be modified. For example, if X (¢) is the current contribution

corresponding to tunneling events Fm < While Y (¢) corresponds to T/,
toRef. [1])

el then (similar
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Here the last term is responsible for the high-frequency limit. The effective charges éi and

éi are determined by the direction of electron tunneling, E_J{, = —&’_, and by the circuit
capacitances [ ] (so that &/ = e only if the current through junction j is measured). Any
current—current correlation function can be written as a sum of Kyy(t) given by Eq. (4)
over all possible transitions between charge states (such a sum is a counterpart of Eq. (3)
in which the sum is written explicitly).

The expressions for spectral densities directly follow from Egs. (3) and (4) because
the Fourier transformation affects only the evolution operator o (r, m|n), and the corre-
sponding Green’s function in the frequency representation is simply obtained from Eq. (1):
o(w, mn) = [(—iwl — )~ n. where 1 is the unity matrix. For example, Eq. (4) leads
to the following spectral density:

Sxy(@)/eL e =2Then [(—iol =) 1o

+2r/, /[(iwl - F)‘l] Then0y’ + 28uSmmdjy Tmen oy’ (5)
nmo<-n nw'm

This method allows to calculate all spectral densities within the framework of “orthodox”
theory, and at least for the single-electron transistor the numerical procedure is rather trivial
[*] because the matrix T is three-diagonal and the matrix inversion is straitforward.

The alternative method of calculations can be based on the Langevin-type approach
[-]. Because of the discrete nature of the charge states, the random term cannot be simply
added (in analogy with the standard Langevin method) to some evolution equation for the
“coordinate” n(z), but should be introduced into the master equation (similar to Ref. [-]).
The derivation of the formalism can be understood in the following way. Let us consider
the ensemble of M (M > 1) independent similar circuits, and let us average all magnitudes
over this ensemble. Then the average (over time) currents and voltages will not change
(due to ergodicity), but the spectral densities of fluctuations (second order magnitudes) will
decrease M times. Hence, to calculate spectral densities of the initial system, we can take
the leading (~ M~!, M — oo) order of the spectral density of magnitudes averaged over
the ensemble.

In contrast to the single system, the dynamics of the large ensemble is easily described
using the Langevin approach. At any moment of time ¢ the ensemble can be charac-
terized by “coordinates” Mo, () which represent the numbers of participants being in
different charge states n (notice that now o () is not a probability but the fluctuating co-
ordinate). While in the stationary state the average number of transitions from state m
to state n during small time Af is given by MT,,,0." At, the r.m.s. of this number is
obviously (MT, <_ncr” At)l/ 2 Hence, the recipe is the following []: for each average

flux M F,{, <038 in the space of charge states, we should add in the master equation the
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random §-correlated (white) flux é,{; «n(t) with the corresponding “seed” spectral density
given by Schottky-like formula,

o (t) = Zrmnan(t) + En (1), En(t) = Zélf?(—n(t) - %‘1'1/'<—m(t)’ (6)
n n,j
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For the fluxes in opposite directions (m < n and n <« m) we should apply &(¢) for each
direction, so that the random flux does not vanish even if the net average flux is zero.
Because of the linearity of Egs. (6)—(7) the final spectral densities of the averaged (over
M) magnitudes are obviously proportional to 1/M. Hence, rescaling to the single system
can be done formally assuming M = 1 in Eqgs. (6)—(7). So, instead of keeping M and
rescaling at the final stage, we will use M = 1 in all equation below.
Using the standard procedure we find the Fourier transform

om(@) = [ (=il =17 g0, ®)

Then for the occupation—occupation spectral density we obtain the expression

Sonan = [-' 1-r-1] [ 1-r—1] St
OmOn Z ( lw ) mm’ (lCl) ) an' Sm én
man
= 2[(—;@1 - r)—l] ot 42 [(ia)l - r)—l] ot 9)
mn nm
which coincides with the result of Fokker-Plank approach (Fourier transform of Eq. (3)
without X and Y factors).
The technique is similar for the current—current fluctuations. The case of Egs. (4) and
(5) corresponds to currents

X)) =& [Dhewon® + &1 ea0]. YO =L 1), ov®+8) 0] (0

and the straitforward calculations using Eqs. (7) and (8) lead to Eq. (5). Thus, the Fokker-
Plank method is equivalent to the Langevin method within the “orthodox™ framework.
However, in contrast to the former approach, the Langevin method easily allows phe-
nomenological generalization for the fluctuations in the range of high (“quantum™) fre-
quencies, fuv ~ €V.

Let us remind that in “orthodox” theory [ ]| the tunneling rate I' = Ip(W/e)/ell —
exp(—W/T)] is determined by the energy gain due to tunneling W = eV, — e2/2Ceff,
where Ip(v) is the “seed” I-V curve of the junction (in the linear case Iy(v) = v/Rj),
Vp is the voltage across the junction before the tunneling, Cesy is the effective junction
capacitance (which also accounts for the environment), and T is the temperature. The
generalization of the Langevin method is the substitution of Eq. (7) by the equation

S,
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which is derived for the individual tunneling event within the standard tunneling hamiltonian
technique averaging the quantum current—current correlator and then taking the Fourier
transform. Eq. (11) can be considered as a generalization of the fluctuation-dissipation
theorem and equations of Ref. [ ] for the case of single-electron tunneling. (Actually, the
only difference is that we separate fluctuations corresponding to two directions of tunneling.
In absence of the Coulomb blockade they could be summed together leading to the standard
factor ] coth((W =+ Aw)/2T) instead of the denominator of Eq. (11).)

Equations (6) and (11) represent a phenomenological generalization in which the low
frequency behavior is treated by the master equation while high frequency properties are
taken into account for individual tunneling events. At high frequencies, w > T, the
occupation—occupation and occupation—current spectral densities vanish, while for the

Ehentl)_

(),
' €It

because the first terms of Eq. (10) are too slow to give a contribution. This result coincides
with the result of Ref. []. The advantage of the Langevin approach is the possibility to
obtain spectral densities in the “orthodox” and “quantum” frequency ranges using the same
formalism while before they were necessarily being treated on different footing.

Notice that in the “quantum” frequency range the current spectral density does not
correspond directly to the available power because of the contribution from zero-point
oscillations. The contribution to be subtracted from SS i is equal to 2hiwReG (w), where

the active conductance

current—current spectral density instead of Eq. (5) we get Syy (w) = &l /S
+€%

ReG(w) = ((éi)z/%a)) [+ — (12)

corresponds to the lowest order of photon-assisted tunneling.
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