
7th Int. Symp. "Nanostructures: Physics and Technology" TP.09p
St Petersburg, Russia, June 14-18, 1999
© 1999 loffe Institute

Dynamics and stability of lateral current density patterns in
resonant-tunneling structures

M. Meixnert, P Rodinmt, E. Schllt and A. Wackert

T Institut ftr Theoretische Physik, Technische Universitfit Berlin,
Hardenbergstrasse 36, D-10623, Berlin, Germany
#:Joffe Physico-Technical Institute, St Petersburg, Russia

Abstract. We study lateral current density patterns in a double-barrier resonant tunneling structure
with a bistable Z-shaped current-voltage characteristic. It is shown that for a positive load the
external circuit provides a positive feedback upon the dynamics of the current pattern. This leads
to accelerated motion of lateral switching fronts which switch the device from the low-conductivity
to the high-conductivity state, and vice versa. Negative feedback and stabilization of a stationary
front can be achieved by implementation of an active external circuit simulating a negative load.

Dynamical charge accumulation within the potential well of a double barrier resonant-
tunneling structure (DBRT) leads to an electrostatic feedback mechanism which increases
the energy of the quasi-bound state supporting resonant tunneling conditions for higher
applied voltages. This mechanism may result in the intrinsic bistability of the DBRT where
a high current and a low current state coexist for the same applied voltage u, and the current-
voltage characteristic becomes Z-shaped, instead of N-shaped, thus exhibiting hysteresis
upon voltage sweep [ 1. Recently it has been pointed out [ , I that such bistability
provides the basis for lateral pattern formation in the DBRT. Lateral current density patterns
are characterized by a current density profile which varies in the plane perpendicular to
the current flow reflecting spatial coexistence of the two stable states. The formation of
such patterns is similar to the appearence of stationary current filaments and travelling
fronts in the case of an S-shaped current-voltage characteristic 1 1. It is known that the
stability and dynamics of current density patterns in bistable semiconductors cannot be
understood without taking into account the circuit conditions I , , 1. In this contribution
we analyze lateral current density patterns in the DBRT and their dependence upon the
feedback provided by the external circuit.

For a given applied voltage u the internal state of the DBRT can be parameterized by the
electron concentration n(x, t) in the quantum well described by the continuity equation []

an I a2 n

-- (Jewf(n, u) - Jwc(n)) + D(n) x-2  ()

where Jew and Jwc are the emitter-well and the well-collector current densities, respectively,
corresponding to vertical transport (along the z-axis), and the last term describes lateral
transport (in the x-direction parallel to the quantum well plane; the width w of the sample
along the other lateral direction is supposed to be small). Generally, the combination of
lateral diffusion and drift in the well plane effectively results in a term with a nonlinear
diffusion coefficient D(n) I,, ]. We have derived approximate expressions for Jew and
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Jw, for a symmetric structure assuming sequential tunneling:

e [ arctan(2A/ F) - arctan(2Q/ F) F A2 + (F/2)2 ]
Jew(n, u) l F "L o A + In] •fwh7" 4[- Q2  F (1/2)2

e
Jwc(n) = -FR .n, (2)

u en u_ en 880 ffnA=-_EF-Ew+2-i--' , Q-2 CintEw, Cint -- , yr2fw lo

Here EF is the Fermi level in the emitter, Ew is the energy of the quasibound state in the
well with respect to the bottom of the well, F is the total broadening of the quasibound state,
FL and FR are the linewidths corresponding to escape via the emitter and collector barriers,
respectively, p is the two-dimensional density of states, 8 and 8o denote the relative and
absolute permittivity, respectively, m is the effective electron mass, Cin1t is the capacitance
of the well, d is the effective thickness of the barriers, and fw is the effective filling factor
of the states in the well. A and Q denote the energy of the quasibound state with respect
to the Fermi level and bottom of the conductance band in the emitter, respectively. The
corresponding spatially homogeneous current-voltage characteristic J(u) = Jew = Jwc is
shown in Fig. 1 (a).

The dynamics of the voltage across the device u(t) is described by Kirchhoff's equation
for the external circuit (see [ ]):

Rdu oL Jew + JWCdx(3
RC = Uo-u-R -uJ- Rw 2 (3)

where U0 is the applied bias voltage, R is the load resistance, L and w are the lateral sample
length and width, respectively, and C is the total differential capacitance of the external
circuit and the DBRT.

Eqs. (1 ),(2),(3) represent an example of a bistable medium with global coupling studied
for stationary current density patterns in [] . For R > 0 any stationary pattern in such a
system is unstable [ 1. Another important class of lateral patterns constitutes of travelling
fronts corresponding to the propagation of the high current density state into the low current
density state (hot front, front velocity v > 0) or vice versa (cold front, v < 0), i.e., they
describe electronic switching processes between the off and the on state. Previously, we
have numerically studied the propagation of planar (I D) fronts in a different semiconductor
model (thyristor) with a Z-shaped bistability [] . The main results of [ I may be applied to
the DBRT as well. The v (u) dependence for the DBRT is shown in Fig. 1 (b). The speed and
the direction of front propagation can be easily controlled by the voltage u. For a certain
voltage the velocity is zero, i.e., the front becomes stationary, while for smaller voltages
(v > 0) the front switches the system to the on state, and for larger voltage (v < 0) the
front switches the system off. The dynamics of u due to the external circuit Eq. (3) leads
to a nonlocal coupling of the front propagation since u depends on the integral value of
the current density over the cross-section and, therefore, on the front position. This results
in a feedback on the front dynamics. The negative slope dv/du < 0 leads to acceleration
of both hot (Fig. 1 (c)) and cold (Fig. 1 (f)) fronts if the DBRT is operated via an external
load resistance R > 0. Decelerated motion and stabilization of stationary front patterns
(Fig. 1 (d,e)) can be achieved by an implementation of active external circuits simulating
a negative load R < 0 and negative capacitance C < 0 [ ]. The front slows down and
eventually becomes stationary. Oscillatory front dynamics is possible for a sufficiently
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2 ), respectively. In these simulations RC = 10-12 s which corresponds

to an instantaneous global feedback on front dynamics. Here we assume a diffusion constant
D = Do - 1 m2/s inside the well. For different values of D the length and velocity has to be
rescaled by a factor D-/Do.
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large capacitance C. In conclusion, this offers convenient control of lateral switching in
the DBRT.
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