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Auger recombination in a quantum well in a quantizing magnetic field

G. G. Zegrya
Joffe Physico-Technical Institute, St. Petersburg 194021, Russia

Abstract. Basic mechanisms of Auger recombination of non-equilibrium carriers in quantum
wells in the presence of a longitudinal quantizing magnetic field are studied. It is shown that two
different recombination mechanisms are present: (i) a resonant non-threshold mechanism, (ii) a
quasithreshold mechanism. The rate of the resonant Auger process depends on the temperature
slightly but on the magnetic field essentially. For the quasithreshold Auger recombination process,
the threshold energy depends on both the quantum well width and magnetic field. It is shown
that the resonant Auger process dominates at low temperatures.

Introduction

In the homogenious semiconductors the mechanisms of Auger recombination in the
presence of quantizing magnetic field have been studied by many authors [1-3]. At
low temperatures the most probable phenomenon may be a resonant process of Auger
recombination wherein two electrons and and a heavy hole (CHCC process) as well as
an electron and two heavy holes (CHHS) participate. In the presence of of a strong
magnetic field the electron spectrum is quantized [4]. As the result of Coulomb inter-
action, the Auger electron havind acquired the energy of the order of Eg (the forbidden
band gap) executes a vertical transfer to a high Landau level without a change in quasi-
momentum. A large quasimomentum transfer is not required bacause of the Coulomb
collision of two electrons. Thus, the Auger process has a resonant character in a quan-
tizing magnetic field. The rate of the Auger process oscillates as a function of magnetic
field, and these oscillations give rize to a break-down of the resonance.

The aim of the present paper is to study theoretically basic Auger recombination
mechanisms in quantum wells in the presence of longitudinal qiantizing magnetic field.
It is shown that in the undeep quantum wells (Eg > U, where U is the quantum well
depth for electrons) there exist two different mechanisms of Auger recombination: (i) a
resonant mechanism analogous to the Auger process in a homogenious semiconductor
and (ii) a quasithreshold mechanism whose threshold energy depends on the quantum
well width [5] and on the magnetic field. In the case of deep quantum wells (Eg < U)
there exists only one mechanism of Auger recombination that is the resonant Auger
process.

1 The rate of Auger recombination

The Auger transition rate for a two-dimensional carrier gas in the magnetic field is calcu-
lated in the framework of first-order perturbation theory in electron-electron interaction:

G = 27 E IM126 (E1 + E2 -E3 - E4 )jj1"22J' 4(I - j3'). (1)

1,2,3,4
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Here fC and fY are the Fermi distribution functions for electrons and holes, El and E2
are the initial, and E3 and E4 final, electron energy states (the hole state is treated as final
one for one of the electrons participating in the process), summation in (1) is performed
over all initial and final particle states including spins ones, M is the matrix element of
Coulomb electron distribution, calculated with taking account for antisymmetrization of
the electron wave functions in the initial and final states. The squared modulus of the
matrix element is broken up into the sum of direct and exchange parts being equal to

IM12 = M112 + M1112 - {M1 M71 + MM 11 }, (2)

M 1 = e d3rd3 3r' (r, o-)4 0 (r', 0') r 3(r, o-)4 4 (r', a-'), (3)

K-4e-rd 1 2r', a-')iri 03 (r', o-') 4 (r, a-), (4)

where r, is the dielectric permeability constant, e is the electron charge. In the scope
of Kane's model that will be used below, the quasiparticle wave function may be su-
perposition of s- and p-type band states. It is convenient to use the basis ui(r')(i =
1, 2, 3, ... , 8), where the conduction-band wave functions are spherical s-type functions,
and those of valence band are eigenfunctions of the operators J2 and ý (where J is the
complete-moment operator). Then, using the Landau gauge (A, = -Hy, Ay = A, = 0
where A is the vector potential, and H = (0, 0, z) is the magnetic field intensity),
complete coordinate wave functions have the form

0 (r) = p(xz) Ci Xn,(y) ui(r). (5)

Here X, are the oscillation functions of the number ni, W(x, z) is a smoothly varying
envelope that depends on the coordinates (x, z), the coefficients Ci being functions of
ni and kz.

The highly excited Auger electrons and holes are not localized in the Z-axis direction.
We have W(x, z) = exp(ikxx+ikz) for those. For the electrons inside the well, W(x, z) =

exp(ikxx) • D(z) where the form of ýo(z) depends on the profile of two-dimensional-
electron potential well. For a rectangular well, ýo(x) is a linear combination of the
functions sin k~z and cos kzz. In the region of underbarrier motion of two-dimensional
electrons which is of basic importance for a given problem, we have ýo(z) = exp(--z),
where ni = 12 mU is the damping index of the wave function under the barrier, m, is
the effective electron mass; and U is the barrier height.

We thus consider the Coulomb collision process for two electrons 1 and 2 with
subsequent recombination of one of them with a hole and with the passage of the
second electron onto a highly excited Landau level n3. Then one should integrate in
(3) and (4) not only over the well region, but over that of the whole narrow-gap
semiconductor, i.e. we need integrate between -oc and +oc. Then we substitute the
Coulomb potential in the form of Fourier integral, and, replacing (5) into (3), we find

I M, 12= (6)
167r2e 4 

4 f d 2q d q 2 qf 6 2612 14

-JJ (qZk 2 1 + A2 )(q, 2 + 2 _, + A2 )
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× ( ,.)q/C"i3(q , 24/jt (q, q ), (7)

where
6(k(,) = 6((klx + k2- - k3x - kax),

1Qh)(q,q') = [Ci*(1)Ci
3
)Ji13(q)] [C, 31•3(-)]

Ci4, (q, q,) = [Cj21C)4•I4 (_q)] [C,2 Cj,44(q')],

k3j-, = k3ý, - ki.,

Jj` 3 (q) e iq(y ) a,,3 (y) dy Jeiqzzsa(z) 3 (z) dz,

A is the Debye screening radius, q is the transmitted momentum, a and /3 denote
particle state numbers (a, /3 = 1,2, 3, 4), & = 1 if oc, = o,,3, and a = 0 if
o,, z o,,3. The remaining summands in (2) would be expressed in a similar way. Last,
the matrix element I M 12 should be substituted into (1) and summed over all particle
states with regard to the energy conservation law, E1 + E2 = E3 + E4. Let the particles
(electrons and holes) be at low Landau levels in their initial state. Then, their energies
measured from the valence band top in Kane's model have the form

4 -y 2 (21_ 1)

E1,2 = Eg + Eo + -2 a-- !
3 all9g ~2 4/

19 = 2-y2 [k+2 (21- 1)]

Here aH = [hc/(eB)]'/ 2 is the magnetic length, -y is Kane's matrix element, the signs
"±" correspond to two spin directions. For simplicity, we consider recombination with
light holes whose mass is mh, = m,. The Landau level n3 > 1 corresponds to a highly
excited electron, the spectrum of that electron is of the following nonparabolic form:

{ 2 2 [Y 2 (+ 1 1)F }1/2

E3((n3) =Eg/2+ (Eg/2)2 2 + a-4 ( 2 (n3+ + }/ (8)

Substituting E2, E2, E3, and E4 into the energy conservation law, we find the minimum
value n'in:

nmin • 2E9n3 (9)
hw'

where w = .___1_ While deriving (9), we have taken into account 'k, <« Eg and n3» 1.
We have also expressed Kane's matrix element -y through the effective electron mass:
h2/m,=4/3• .' 2 /Eg.

2 Results

Thus summing over the initial and final states in (1) with regard for the energy conser-
vation law, we find the Auger-recombination time TA

1/1T-j = G/IN = 8-3(27r)5E (iw1EEo\ 1/2~ g2

(10)

x(AEoAT)1/ 2 aH 4NeNh4'(T, nl3)
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Here N, is the two-dimensional electron concentration, Nh is the tridimensional hole
concentration; EB 7 is the Bohr electron energy; the characteristic lenghs AE0,
and AT are equal to

AE, = (2 mEo ' , AT h 
2 = (2 )1/2

respectively, d is the characteristic quantum-well width corresponding to the dimensional
quantization energy E0 , 4'(T, n3) is a dimensionless function of the temperature and
magnetic field equal to unity when the transition is resonant, and exp(- L) outside the
resonance.

The oscillating behaviour of 1 /I-T, as a function of magnetic field is an apparent
result. When two electrons compile as Coulombian ones at the lowest Landau level,
one of these passes into the valence band, another, absorbing the transmitted energy,
turns into a highly excited state. The rate of such process is maximum if the highly
excited electron exactly arrives at the Landau level of the number n3, fitted the energy
conservation law (formula (9)) (resonance transition), and small (or equal to zero at
T = 0) if the highly excited electron has fallen between two Landau levels (non-resonant
transition).

The work was partially supported by the Russian Foundation of Fundamental Re-
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of Solid State Nanostructure" (Grants 97-0003 and 97-1035).
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