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Abstract the network dynamically and nodes of a previously unseen

Networked embedded systems are composed of a large num- type might join in their place.

ber of physically distributed nodes that interact with the phys- In this paper, we consider how we might apply techniques

ical world via a set of sensors and actuators, have their own from model-based diagnosis to these types of problems. In

computational capabilities, and communicate with each other general, traditional model-based techniques are centralized.
via a wired or wireless network. Monitoring and diagnosis They assume that the diagnostic algorithm is run on a sin-
for such systems must address several challenges caused by gle processing unit that has access to observations from all
the distribution of resources, communication limitations, and sensors in the physical plant. In the next two sections of
node and link failures. This paper presents a distributed di- the paper, we briefly discuss centralized, model-based tech-
agnosis framework that exploits the topology of a physical niques and discuss how they cause scalability, robustness
system to be diagnosed to limit inter-diagnoser communica- and reconfigurability problems if employed directly on net-
tion and compute diagnoses in an anytime and any informa- worked, embedded systems. We then present a set of use-
tion manner, making it robust to communication and proces- ful properties for diagnostic algorithms for such systems.
sor failures. The framework adopts the consistency-based di-
agnosis formalism and develops a distributed constraint sat- In the fourth section, we present a simple formulation for
isfaction realization of the diagnosis algorithm. Each local diagnosis of discrete, distributed systems in order to mo-
diagnoser first computes locally consistent diagnoses, tak- tivate discussion and map the formulation onto distributed
ing into account local sensing information only. The local constraint satisfaction and distributed constraint optimiza-
diagnosis sets are reduced to globally consistent diagnoses tion. We next propose an algorithmic framework for dis-
through pairwise communications between local diagnosers. tributed diagnosis that operates in an anytime manner and is
The algorithm has been successfully demonstrated for the di- robust to communication and processor failures. We dis-
agnosis of paper path faults for the Xerox DC265 printer, cuss the communications requirements for the framework

and compare performance results for one instantiation of the
Introduction distributed diagnosis framework against a centralized diag-

Our diagnostic research is motivated by existing and emerg- noser. In the related work section, we discuss why exist-

ing applications of networked, embedded systems. In such ing distributed constraint satisfaction and optimization algo-
systems the physical plant is composed of a large number rithms are not well suited for distributed diagnosis of net-

of distributed nodes, each of which performs a moderate worked, embedded systems. We finally discuss two open

amount of computation, collaborates with other nodes via areas for future work. The contributions of this paper are

a wired or wireless network, and is embedded in the phys- that it illustrates the interesting features of networked, em-

ical world via a set of sensors and actuators. Examples bedded systems that make them challenging for traditional

include distributed sensor networks (Chu, Haussecker, & model-based diagnosis techniques, it presents a simple for-

xelectromechanical systems with em- mulation of the distributed diagnosis problem for these type
bedded controllers (Zhao et al. 2001), data networks, smart of systems and relates it to distributed constraint satisfaction
batedd cntrlers (Zhacson et al. 2001), andatahntworkessmt and optimization, it presents a class of robust, anytime al-
matter systems (Jackson et al. 2001), and ad-hoc wireless

networks of consumer devices. Such systems present a num- gorithms for performing diagnosis, and it illustrates prelim-

ber of interesting new challenges for diagnostic systems. A inary diagnostic results on a model of a real physical system

moderate amount of computation is potentially available, but with comparisons to an existing centralized diagnoser.

it is partitioned into embedded chunks that range in size
from tiny, in the case of smart dust sensor motes (Kahn, Model-based Diagnosis
Katz, & Pister 1999) to moderate in the case of consumer de- The objective of diagnosis is to determine the state of a phys-
vices. Communication between nodes is available, but may ical plant such as a printer, aircraft or network, based upon
involve unreliable delivery, power-constrained wireless net- the current sensor readings from the plant and prior knowl-
works, or large, complex topologies requiring multiple hops edge about the plant's structure and behavior. In order for
to connect two arbitrary nodes. Finally, nodes might leave the diagnosis to be useful for on-line control of the plant,



accurate diagnoses must be generated in a time-critical man- Given a set of component models and a centralized diagnoser C:
ner using the available computational resources. In most 1. C combines the component models in a central store
model-based diagnostic techniques, prior knowledge about
the physical plant consists of a description of the behav- 2. Observations are collected from the physical system
ior of each component of the plant, including normal and 3. C computes the system-wide diagnoses
faulty behaviors, and the interconnections between compo-
nents (Hamscher, Console, & de Kleer 1992). Partial ob- Figure 2: Centralized Diagnosis of a Centralized System
servability presents the main challenge of diagnosis. Faults
in a component may not be directly observable, and in-
stead may cause changes in the behavior of the plant that Given a set S of currently connected components and a central-
propagate through several components before becoming ob- ized diagnoser C:

servable at a sensor. To perform diagnosis, the component 1. VS, S forwards its component model to C
models are combined into a global store, observations are 2. C combines the component models in a central store
obtained from the physical plant, and a centralized algo-
rithm is applied to find a system-wide diagnosis. We be- 3. VS, S forwards its observations to
lieve this very abstract description captures many diagnostic 4. C computes the system-wide diagnoses
formalisms, including logic-based formalisms such as those 5. VS, C projects the variables of interest to S from the diag-
based upon (de Kleer & Williams 1989) or (Reiter 1987), noses and forwards them to S
bond graphs (Mosterman & Biswas 1997) and many others.
Throughout this paper we will use a formalism and exam- Figure 3: Centralized Diagnosis of a Networked System
ples consistent with GDE (de Kleer & Williams 1987) and
its descendants, keeping in mind the general properties of
centralized, model-based diagnosis that are at issue.

Figure 1 on the next page schematically illustrates a small
model for the kind of traditional problem we might attack
with a model-based diagnoser. The 24 boxes represent Challenges of Monitoring and Diagnosing
rollers, gears, motors, sensors and other devices in a printer Networked, Embedded Systems
paper path. For example, the acRoll acquires a sheet of pa- Suppose we would like to perform diagnosis for a recon-
per from the paper tray and transports it to the feedRoll, figurable, networked, embedded system. Such systems are
driven by the acBelt. We have developed a simple diagnos- constructed such that each component is locally controlled
tic application for this paper path system using L2 (Kurien & by a small, embedded processor which coordinates with
Nayak 2000), a centralized, GDE-style diagnoser developed other processors via a potentially unreliable network. In ad-
by NASA. Each component is modeled by finite state ma- dition, components and their processors might be unplugged
chine augmented with finite domain variables that describe and replaced with upgraded versions from time to time. Ex-
its behavior. Arcs between components in Figure 1 repre- amples of such systems are ad-hoc wireless networks, modu-
sent interactions between components, for example convey- lar robots, and more conventional systems such as intranets.
ing that the acRoll receives an angular velocity from the ac- Even traditional electro-mechanical systems such as printers
Belt. This is represented by a constraint between the cor- and automobiles now contain on-board networks, embedded
responding variables. There are five sensors that report the sensing and tens or hundreds of local controllers.
time of arrival of a sheet of paper at various points in the We can provide diagnostic information to the local con-
paper path. trollers of such a system using centralized diagnosis via the

To perform diagnosis with L2 and this model, observa- process outlined in Figure 3. First, a centralized, global di-
tions as to when or if the paper arrived at various points in agnosis problem is created by assembling a global model of
the path would first be obtained from the printer's sensors the components within a centralized diagnoser. The obser-
via its internal data bus and sent to an external processor vations are centrally collected and a diagnosis or set of diag-
running L2. The values would be discretized and assigned noses are computed by the centralized diagnoser. Aspects of
to the corresponding variables in the constraint system. A the centralized, global diagnosis are then be distributed back
constraint optimization algorithm would be applied to the to the local controllers.
updated constraint system to find assignments to the vari- This approach makes several assumptions. First, there
ables that are consistent with the observations. Such an as- must exist a processor large enough to store the global diag-
signment might represent that the paper was late at the first nostic model and run the centralized diagnostic algorithm.
sensor because the feedMotor is slow, slowing down both If this processor fails, it must be acceptable for no further
the acRoll and the feedRoll. This information could then diagnoses to be generated. Second, there must exist a cen-
be used to perform maintenance, or in systems with redun- tral bus or buses with sufficient capacity to forward all data
dancy, to reconfigure the system for robust control. In ad- needed for diagnosis to the central processor. If a bus fails,
dition to this small demonstration, we have applied similar the data needed to diagnose and recover for the failure must
diagnostic techniques to spacecraft (Bernard et al. 1998), be located on the near side of the bus with respect to the
chemical processing plants (Goodrich & Kurien 2001), sci- diagnostic processor, or it must be acceptable for no further
entific instruments, and other electromechanical systems to diagnoses to be generated for the bus and the far side compo-
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Figure 1: Paper Path Model in Xerox DC265ST Printer

nents. Finally, the set of components to be diagnosed must communicate only if the subsystems of the physical plant
be represented using the same formalism, and in most appli- they correspond to are physically interconnected or share
cations must be known a priori d data. Thus the structure of our diagnostic architecture

With networked, embedded systems, all of these assump- will mimic the physical topology of the plant being di-
tions may be false. Each processor in the plant may be quite agnosed. For the type of engineered systems that are typ-
small. If a processor fails, we may require the components ically amenable to diagnosis, physical scalability is ac-

attached to remaining processors to continue operating in complished by modularizing subsystems and connecting
a full diagnosis and control cycle. If the network is bifur- them through fairly narrow physical interfaces (power,
cated, we may require that each half of the plant continues data, physical support). By respecting these interfaces,
operations to the extent possible and works to resolve the we expect our communication needs for moving diagnos-
failure with the locally available information. New compo- tic data to scale as well as the underlying physical plant.
nents might join into the network at any time by publishing a Robustness
their capabilities such as described by JINI (Sun Microsys-
tems Inc 1999). A diagnostic architecture must be extremely robust to fail-

These issues suggest an approach wherein we do not arti- ure and able to operate in an anytime and any information
ficially centralize the problem but allow a local diagnoser to manner. This can be accomplished with refinement. We

be associated with each system processor. Each local diag- would like to arrange that each diagnoser locally produce
noser finds a partial diagnostic solution using a model of the a superset of the diagnoses that a global diagnoser would

locally controlled portion of the plant and the locally avail- produce for the local components. Communication with

able observations. Communication is then required to re- other diagnosers is then used only to prune the local diag-
fine the partial diagnostic solution into a diagnosis, in effect nosis set. This yields several important properties. First,
making use of observations and models local to other diag- the diagnostic process can be interrupted at any time and
nosers. We next suggest themes for dividing and coordinat- each diagnoser will contain the true diagnosis plus possi-
ing the diagnostic process to maximize scalability, robust- ble imposters. This is an important safety feature in do-
ness and reconfigurability, based upon our experience with mains where taking action based upon a false negative can
both diagnosis and networked, embedded systems. cause serious harm. Second, if diagnosers fail, then the

remaining diagnosers will simply produce coarser (more
e Scalability conservative) estimates of the possible states of their com-

Dividing the diagnostic problem among local diagnosers ponents. Third, if the system is bifurcated due to a com-
allows us to apply multiple processors and potentially ad- munication failure, then each half will produce all diag-
dress computational scalability problems caused by the noses consistent with the reachable diagnosers and any
small processors we may encounter in some embedded state of the other half of the system.
systems. To address communication scalability issues,
we seek to exploit the topology of the physical plant. eReconfigurability

We would like to arrange that two local diagnosers need A side effect of employing local diagnosers that commu-
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Figure 4: Automaton Representing A Single Valve Figure 5: Variable Connectivity In a Global Model

nicate via opaque interfaces defined by the physical plant failure when it is commanded. The transition portion of the
is natural support for modular or reconfigurable plants. automaton can thus be captured by the following formulae.
Intuitively, a connected subset of the components of Fig- a, - ntormalzrý
ure 1 may be disconnected from the plant and replaced by vt - closed A cmdt - open, V+1 -- oper,
new hardware with a different model, so long as the phys- vt - closed A cmdt # oper, n v+, -- closed
ical and diagnostic interface at the point of disconnection Vt - oper, A cmdt - close v+, -- closed
is maintained. In addition, this opens the possibility of Vt - oper, A cmdt # close V+1 -- oper,
participation by different implementations of the same di- vt - stuckClosed v+1 - stuckClosed
agnostic algorithm or even different algorithms participat- av - stick=-v,t+, - stuckClosed
ing in a diagnosis. The latter would of course require an
interface that is semantically meaningful for all partici- Intuitively, the diagnostic task is to find a set of assignments
pating diagnosers. However, even the former capability to the assumptions, here {av}, such that the model is consis-
might be useful in allowing vendors of components that tent with the observations, here {flowv }. For example, sup-
are likely to be connected (e.g. data network components pose vt = closed, we command the valve open, represented
or power distribution components) to create diagnosers by crndt = open. The plant assigns 0 as flowv = zero.
that can collaborate. The only consistent assignment to av is av = stick and we

diagnose valve is stuck closed. If we wish to model multiple
We believe these properties will be of interest as we begin to automata, we introduce a mode and assumption for each au-
investigate applications involving very large numbers ofem- tomaton and compile all automata into a set of formulae that
bedded processors communicating via networks. In the next may share variables. For example, two valves in series share
section we introduce a simple formalization that will allow the same flow. Figure 5 visualizes the compilation of the de-
us to discuss algorithmic directions for type of problem. vice constraints into a global constraint system model. Each

node represents a finite domain variable. Two nodes are con-
Centralized Formulation nected by an edge if the two variables appear in a constraint

Our approach to distributed qualitative diagnosis follows the together, denoting that the possible values of the variables
centralized diagnostic formalism developed in (de Kleer & are related by interacting together in some physical process
Williams 1989) and extended in (Williams & Nayak 1996) or the transmission of data. Note that a realistic model such

and (Kurien & Nayak 2000). To motivate our distributed as that of Figure 5 contains many observations and assump-
algorithms, we begin with a brief overview of the central- tions, and many assignments may be consistent. More for-
ized technique, summarized from (Kurien & Nayak 2000). mally, let A denote the set of assumptions, 0 denote the set

Suppose we would like to diagnose the state of a single com- of observations, and F denote the formulae describing the

ponent, a valve, which is qualitatively modeled via the finite plant. Given an assignment Q to 0 created by observing

state machine illustrated in Figure 4. We refer to each possi- the plant, a diagnosis D is an assignment to A such that the

ble discrete state of a component as a Tnode. A valve v has following propositional formula is consistent:
three modes, open, closed, and stuckClosed. The behav- AajGA(aj = di) AojGO (oj = Wj) A F.
ior of the flow of the valve within each mode, which has the
discrete domain {zero, nonzero}, can be captured with the To perform diagnosis over multiple components, we must
following propositional formulae, find an assignment to each a that renders the set of formulae

consistent with all observations. Intuitively, we assign the
v - opern, - flown - Ponzero observations reported by the physical plant, Q to the vari-
v - closed > flon -- zero ables of the graph corresponding to observations, 0, then
v - stuckClosed - flow -- zero reassign the assumption variables, A until the constraint sys-

If flowv is observable from the physical plant, we will refer tem illustrated in Figure 5 becomes consistent. Thus in this
to this variable as an observation. In order to represent the diagnosis framework, diagnosis can be viewed a constraint
non-determinism of the automaton within a propositional satisfaction problem.
framework, the encoding introduces an assumption variable A second diagnostic task is to find the most likely diag-
a. Intuitively, av represents the choice that Nature makes noses. For each assumption assignment we can associate
as to whether valve v will behave normally or experience a the prior probability of the even the assumption represents.



1. Given observation set Q, if oi E OL, assign oj = wj in L.

2. VL, if OL 7# 0, compute all assignments to ALURL s.t.
AoEL(jwj) AaiEAL (-~di) Ar-ERL -ripi) ý- FL

3. For each r C RL, for each other diagnoser M, ifr E VAi send
all RL assignments to M.

4. In each such M, compute all assignments such that

AiE-RL (ri - pi) AakEA, (ak - dk) A,,kERA (rk - pk) -

FAII
Figure 6: Partition Among Three Diagnosers 5. If the consistent RAM1 assignments decreased in step 4, return

to step 3, substituting M for L.

Thus, P(a,-stick) denotes the prior probability of the valve Figure 7: Consistency-based, Anytime Diagnosis
sticking. Assuming conditional independence, the probabil-
ity of a diagnosis is defined as follows.

P(D) = 11aiE)P(ai = di) communicates with directly other diagnosers to further re-
duce the set of consistent diagnoses for the local compo-

Given multiple components, we must find the assignment to nents. We would like that the diagnoses start with a superset
each a that renders the set of formulae consistent with all of the globally consistent diagnoses and move toward only
observations such that the probability of the assignment is the globally consistent diagnoses. We define the relation-
maximal. Intuitively, we assign the observations reported ships conservative and feasible between the diagnoses
by the physical plant, Q to the variables of the graph corre- produced by a global diagnoser and the diagnoses produced
sponding to observations, 0, then choose among the possi- by a local diagnoser. A local diagnosis set DL is conserva-
ble reassignments of assumption values to assumption vari- tive with respect to the global diagnosis set DG if
ables, A, until the constraint system illustrated in Figure 5
becomes consistent. The choice of which assumption to re- V5 0 E D0 IAL (•G) E DL
assign and to which value to assign it is based upon the prob- where H is the projection operator. That is, the assignments
ability of the possible assignments. In this case, diagnosis made to the assumptions local to L by a global diagnosis
can be viewed as a constraint optimization problem. must also be made by a local diagnosis. A local diagno-

sis set DL is feasible if the assignments made to the local
Distributed Diagnosis assumptions are contained in a consistent global diagnosis.

In this paper, we propose splitting the global diagnostic pro- More formally,
cess into a number of cooperating local diagnostic processes. V6L c DL 11G c DG : HA, 0G) = 6L
In order to distribute the problem, we divide the global di-
agnoser which produces assignments to A into a set of local
diagnosers which make assignments to subset of A. Intu- Incremental Consistency
itively, we partition the edges of Figure 5. If a node is con- We next discuss an algorithmic framework for incrementally
nected to edges in more than one partition, it is replicated revising a set of conservative diagnoses into a set feasible di-
and the partitions must reach consensus on its value. More agnoses in a robust, anytime, distributed manner, followed
formally, a local diagnoser L is described by (FL, VL, AL, by results from one particular instantiation of this frame-
OL, RL) where FL is the subset of F assigned to L, VL work. The approach of the algorithmic framework is similar
denotes the set of variables that appear in FL, AL denotes in spirit to Waltz's algorithm (Waltz 1975). Each set of di-
ANVL, OL denotes ONVL and RL denotes the union of agnoses is monotonically reduced toward a feasible set as a
VLNVM over all other diagnosers M. Figure 6 illustrates a side effect of spreading consensus on the value of variables
possible partitioning of the constraint graph of Figure 5. The shared between diagnosers. The algorithm is illustrated in
slightly darker nodes indicate the members of RL, shared Figure 7.
variables that have been replicated. Given a fixed number The algorithm operates by incrementally reducing the
of diagnosers or the maximum number of constraints a diag- possible assignments to AL for all L, first by introduction
nostic processor can accommodate, we can use a graph par- of observations and second by communication between di-
titioning algorithm (Sanchis 1989) to find a partitioning of agnosers. Each local diagnoser begins with a conservative
the graph that attempts to minimize RL for each diagnoser. local diagnosis set in AL. Typically this would be all possi-

Our approach to finding consistent diagnoses in a dis- ble diagnoses, which can be implicitly captured by an appro-
tributed fashion is refinement based. Intuitively, each local priate encoding of the constraint set FL. In Step 1, observa-
diagnoser finds the diagnoses for the locally modeled com- tions are assigned in every diagnoser which has constraints
ponent that are consistent with the constraints of the local involving an observation. In Step 2, the observation assign-
model and the local observations. This is a superset of the ments are used to compute all assignments to ALURL that
diagnoses for the local components that are consistent will are consistent with FL and the observations received by L.
all constraints and observations. Each local diagnoser then Note that the projection of AL from these assignments is a



conservative diagnosis set. Intuitively, suppose an assign- C. In Step 5, C forwards the diagnostic results to each of n
ment to AL appears in a global diagnosis but is not com- components. Assuming all observations from a single com-
puted by L. If it is not computed, it must be inconsistent with ponent can be sent in a single message, Figure 3 requires
FL and the assignments to OL. It is therefore inconsistent s point to point messages to C and one broadcast message
with F and the assignments to 0, and could not appear in a from C to all n components
global diagnosis. In Step 3, the assignments to RL are pro- We now consider the communication requirements for the
jected out of the consistent assignments of L and forwarded distributed algorithm of Figure 7. This algorithm performs
to each other diagnoser M that references these variables. In distributed diagnosis by exchanging messages that refine the
Step 4, M eliminates a subset of its assignments that are not value of shared variables across local diagnosers. Let v be
feasible. Intuitively, an assignment a to Am is not feasi- the number of variables that are shared, and r be the av-
ble if there is no assignment to A containing a that is con- erage number of diagnosers that share each variable, and
sistent with F and 0. If a constrains a variable in RL to m be the average number of messages exchanged that in-
have a value that was not received from L, then a is incon- volve a given variable. For example, if each local diagnoser
sistent with all consistent assignments to AL. Thus, each uses unit propagation, it can send messages specifying that
time Step 4 is performed, infeasible assignments to AAJ are a variable must have a certain value or cannot have a certain
eliminated. Each diagnoser begins with a conservative set value, but no messages specifying disjunctions between as-
of assignments to AL, and as rounds of communication are signments. Thus m is bounded by the size of the largest do-
performed, the local diagnoses are moved toward feasibility main of a shared variable. The increase in messages created
in an anytime manner. Per Step 5, the algorithm continues as by moving to the distributed diagnoses technique is given by
long as consistent assignments are eliminated. In the worst the ratio
case, each loop would eliminate one of an exponential num- 0 r1
ber of possible assignments. 8 + 1

Note that we have described the algorithm to propagate Note that counting the number of messages exchanged is
sets of assignments that remain consistent in one local di- not sufficient to determine the cost of communication. In
agnoser to to other diagnosers in which the assigned vari- many applications, such as wireless networks with limited
ables appear. More generally, we may propagate any in- energy or bandwith, the number of packets transmitted is a
formation that allows remote diagnosers to restrict the do- critical cost measure. Network topology will determine the
main of a variable based upon inference performed in the number of packet transmissions or hops required to deliver
local diagnoser. Examples include assignments that cannot a message. In many applications, each node in a network
be made because of constraints within one diagnoser (no- is connected to a small number of neighbors. Point to point
goods), assignments that must be made, or sets of possible communication is implemented by multiple hops between
assignments to a variable that remain consistent. Note also neighbors, and a broadcast is implemented by flooding the
that this algorithm is not complete with respect to distributed network. Let h, be the average distance in hops between a
constraint satisfaction. Intuitively, suppose we have two lo- node with a sensor and the centralized diagnoser. Let h, be
cal diagnosers, one containing only the constraint AVB and the average number of hops between nodes that share a vari-
the other containing only the constraint AVB. Neither can able. In general, the change in the total number of packet
constrain and propagate the value of B, though B must be transmissions required by decentralizing the problem is de-
true. This same restriction applies to the centralized con- termined by
straint satisfaction technique used in L2, so we do not be- vrrMhj
lieve it presents a significant drawback. The related work a2 - sh, + n
section contains further details on the relationship between Intuitively, packet transmission for the centralized diagnoser
distributed diagnosis and distributed constraint satisfaction scales with the size and width of the network, while the de-
and why we believe an incomplete algorithm is sufficient, centralized approach scales with the number of constraints

that cross network components. Note that if the network
Communication Requirements topology reflects the physical interactions of the compo-

When presented with a networked, embedded system, we nents, it is likely the case that h, < h,. Thus we can
may perform centralized diagnosis of the distributed system construct wide networks with very localized interactions for
by transmission of observations or distributed diagnosis of which centralized diagnosis requires more packet transmis-
the distributed system by transmission of intermediate re- sions than decentralized diagnosis, though we do not expect
sults. Choosing distributed diagnosis allows us to trade com- this to be the case in practice. In addition to total packet
munication bandwidth for reduced processor requirements, transmission, we may further refine our cost measure to in-
increased robustness and greater reconfigurability. In this clude the maximum number of packets transmitted by any
section, we examine how the communication requirements link in the network. This determines the minimum band-
of the distributed, incremental diagnosis algorithm compare width or power storage a network node must support. The
to a centralized approach. We first consider the communi- ratio a2 does not capture that in the centralized case, all mes-
cation requirements of the centralized procedure shown in sages must pass through network links connected to the cen-
Figure 3. Let n be the number of components and s be the tral diagnoser. This drives up the minimum capabilities of a
number of components with sensors. In Step 3 of the pro- network node in relation to distributed diagnosis where mes-
cedure, each of s components forwards its observations to sage sources and destinations are more evenly distributed



Independent L2 Distributed Related Work
Faults In Diag I Time Spread I Diag Time
First module 6 0.02 9 21 0 A diagnoser for a networked, embedded system may be cen-
Two modules 12 0.18 14 49 0 tralized, decentralized or distributed. Work in centralized
Three modules 84 13.28 20 343 0.05 diagnosis may be applied by collecting models and observa-
All modules 108 27.08 24 637 0.22 tions from the networked components of the physical plant

and appling a centralized algorithm. As described in the
Table 1 : Comparison of distributed diagnoser and L2 third section of this paper, this raises robustness and scalabil-

ity issues that must be addressed. Rish, Brodie and Ma, for
example, attempt to increase the efficiency of a centralized

through the system. We are currently defining a diagnostic diagnostic procedure for a distributed network of computers

model for a distributed sensor network in addition to avail- using an approximate representation and carefully designed

able models of more traditional electro-mechanical systems active probing of the distributed system (Rish, Brodie, & Ma

in order to better characterize the communication require- 2002). In decentralized diagnosis, e.g. (Debouk, Lafortune,
ments of both distributed and centralized algorithms & Teneketzis 2000), local diagnosers communicate with a

coordination process that assembles a global diagnosis. The
coordination process of decentralized approaches are still
subject to robustness and scalability issues. We are there-

Results fore pursuing an approach of distributed diagnosis, similar
to (Baroni et al. 1999), where there is no centralized con-

To implement the distributed diagnosis algorithm described trol structure or coordination process. Each local diagnoser

above, each local diagnoser could represent its conservative communicates directly with other diagnosers.

diagnosis set as a partial assignment in a GDE-style diag- We have formulated the the distributed diagnostic pro-
noser, a relational table, a binary decision diagram and so cess as a distributed constraint satisfaction problem (DCSP).
on, so long as the representation can be efficiently pruned Since many problems in scheduling, resource allocation, and
when an observation or neighboring diagnoser decreases the hardware design can be formulated as constraint satisfaction
range of a variable. Ideally, we would like to test a central- problems, the distributed constraint satisfaction problem has
ized diagnoser against a set of local diagnosers that compute received a large amount of attention. Yokoo and Hirayama
and represent diagnoses in the same manner. For these pre- provide an excellent overview (Yokoo & Hirayama 2000) of
liminary results, we present the performance of the central- algorithms for solving DCSP's. These existing algorithms
ized L2 diagnoser against a distributed diagnoser that takes do not meet our needs for two reasons. First, the great ma-
advantage of the small local model size enabled by distribut- jority of the algorithms are formulated assuming the com-
ing the problem. PARC intern Rong Su implemented the putational nodes and network connecting the nodes are re-
distributed algorithm using finite-state automata to prune in- liable, and that all messages sent between nodes arrive in
consistent assignments to VL (Steps 2 and 4 of Figure 7) and the order sent. For diagnosis of networked, embedded sys-
a distributed consensus algorithm (Steps 3 and 5) shown to tems, we seek specific guarantees of behavior in response to
converge to feasible diagnoses (Su et al. 2002). Table 1 the loss of computing nodes or bifurcation of the network.
compares performance with L2 on the paper path model. Second, the majority of DCSP algorithms are designed to
The first three columns are the name of the diagnostic sce- solve general discrete constraint satisfaction problems, such
nario, the diagnoses found by L2, and the time required. as the graph coloring problem. The ability to solve general
Since the physical plant has few sensors, the number of con- CSP problems requires features that complicate distribution,
sistent diagnoses grows with the complexity of the scenario, such as backtracking on choices for variable assignments.
The fourth column is the number of local diagnosers reached In practice, centralized diagnosers are able to find consis-
via Step 3 of the algorithm, out of 24. The fifth column tent diagnoses using incomplete, backtrack-free procedures
lists the number of diagnoses found by the distributed al- such as unit propagation. This difference arises because the
gorithm. Note that the FSA-based algorithm finds more di- constraints we generate from finite state models such as il-
agnoses than L2. L2 is conflict based, and thus postulates lustrated in Figure 4 tend to be closer to Horn clauses in
only those failures that can eliminate a discrepancy between structure than general discrete constraints and diagnosis may
an expected observation and the observation received from use observation values asserted by the physical plant to drive
the plant. The FSA-based algorithm finds all consistent fail- constraint processing. We therefore expect a distributed di-
ures, including those that would be indistinguishable from agnoser acting upon the same models should be able to use
proper operation of the plant. The sixth column is the time less powerful inference methods than full constraint satis-
to compute the diagnoses, demonstrating the dramatic speed faction. While we have encountered full DCSP algorithms
advantage, on this model, of computing feasible local diag- that allow some fault tolerance, such as the Mozart system
noses via a pre-compiled FSA representation then determin- (Roy 1999), and some simpler constraint processing meth-
ing consistent combinations versus global, on-line inference. ods that assume reliable, fully connected networks, such as
The current implementation runs each local diagnoser seri- distributed arc consistency (Nguyen & Deville 1998), we
ally on a single processor, and we believe a parallel imple- have not yet encountered an algorithm that is sufficiently
mentation will provide a greater speed advantage, narrow in scope and robust to failures.



Future Work tion. This can be done hierarchically and in parallel, allow-

A number of issues remain for future work. The issue of ing us to rule out inconsistent partial combinations of local

how to use knowledge of the prior probability of failures to diagnoses in order to avoid explicitly checking all combina-

avoid computing all consistent diagnoses has been explored tions. Intuitively and from initial experiments, we suspect

but not solved. The algorithm of Figure 7 also does not take for many problems this technique would be a competitive

into account any information about the likelihood of fail- method for producing all consistent global diagnoses. In

ures. We may of course find the set of globally consistent fact, the performance numbers for the FSA-based distributed

diagnoses and compute the probability of each by assuming algorithm shown in Table 1 are for both computing the con-

conditional independence of the failures, as described above. servative and feasible local diagnoses for each local diag-

However, rather than computing the probabilities of all con- noser and then computing the globally consistent combina-
sistent diagnoses, we might wish to avoid generating un- tions of these local diagnoses. Formalizing this technique

likely diagnoses given we have generated a sufficient num- and more thoroughly investigating its effectiveness remain

ber of consistent, likely diagnoses. Conflict-directed, best- future work.
first search (de Kleer & Williams 1989) is a centralized, dis-
crete constraint optimization algorithm that is specialized for Conclusion
diagnosis. It efficiently enumerates consistent assignments We have developed a distributed diagnosis framework that
to a set of propositional variables in order of their cost, or in leverages the topology of the physical plant to limit inter-
this case enumerates diagnoses in order of their prior prob- diagnoser communication and compute consistent diagnoses
ability. Intuitively, it operates by starting with the highest in an anytime and any information manner, making it ro-
probability assignment to the assumptions, the case where bust to communication and processor failures. The frame-
no failures have occurred. It substitutes a minimal cost as- work is conservative, in that it avoids false negatives in fa-
signment to an assumption with a non-minimal cost assign- vor of false positives in the case where computation cannot
ment only when a conflict between an observation value as- be completed due to limited time or communication failure.
signed by the plant and the value predicted by the current This property can be vital in applications where safety is
assumption assignments occurs. Our current direction in critical. In addition to being anytime and conservative, our
developing a distributed analog is to begins with a maxi- approach allows a very small granularity for the local di-
mum likelihood (e.g.,no failure) assignment to AL within agnosers. We can potentially create a diagnoser per physi-
each diagnoser L, which in turn constrains the shared vari- cal component if desired. This flexibility allows us to con-
ables. When diagnosers L and M disagree on the value of a sider time/space/communication tradeoffs that implement
shared variable r, each performs a local diagnosis to conser- each local diagnoser as an exponentially large (in the small
vatively approximate the maximum probability assignment local model size) structure that enables diagnosis to be per-
to the assumptions that would admit a different value for formed collaboratively on very weak networked processors.
r. This information can then be used to limit propagation One implementation of the distributed algorithm for finding
of variable changes throughout the system. We have imple- consistent diagnoses has been implemented using a discrete-
mented a preliminary version of this system using copies of event formulation and tested on one model. Our future work
L2 as the local diagnosers for the purposes of exploration, includes implementations of the algorithm using binary de-
but we are currently limited to very simple network topolo- cision diagrams and the unit propagation implementation of
gies. Formalizing a reasonably general algorithm for gener- L2 to compute locally consistent assignments. The latter
ating a conservative estimate of the most likely diagnoses in will allow direct comparison of centralized and distributed
a robust, distributed, anytime manner remains future work. implementations of the same diagnostic technique on a va-

As framed here, the distributed diagnoser never computes riety of problems modeled for L2. We are also continuing
complete global diagnoses. Rather, at each local diagnoser to extend the formulation to include optimization-based dis-
it computes feasible local diagnoses. These are projections tributed diagnosis.
of the global diagnoses that are relevant to that diagnoser. In
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diagnoses, to inform its control. However, even when per- agnoser as a PARC intern. NASA Ames Research Center provided
forming distributed diagnosis of a distributed system, com- the L2 diagnosis engine.
putation of the global diagnoses may be of interest for pur-
poses such as centralized, supervisory control or display to a References
user. We note that simply taking the cross-product of the fea- Baroni, P.; Lamperti, G.; Pogliano, P.; and Zanella, M.
sible diagnoses produced by each local diagnoser will result 1999. Diagnosis of large active systems. Artificial Intelligence
in a superset of the global diagnoses. Some combinations 110(1):135-183.
of the cross-product may not appear in any consistent global Bernard, D. E.; Dorais, G. A.; Fry, C.; Jr., E. B. G.; Kanefsky,
diagnosis. If the consistent global diagnoses are needed, we B.; Kurien, J.; Millar, W.; Muscettola, N.; Nayak, P. P.; Pell, B.;
may compute them by checking combinations of local feasi- Rajan, K.; Rouquette, N.; Smith, B.; and Williams, B. C. 1998.
ble diagnoses from multiple diagnosers against a combined Design of the remote agent experiment for spacecraft autonomy.
model using a linear-time technique such as unit propaga- In Procs. IEEE Aerospace.



Chu, M.; Haussecker, H.; and Zhao, F. 2001. Scalable Yokoo, M., and Hirayama, K. 2000. Algorithms for distributed
information-driven sensor querying and routing for ad hoc hetero- constraint satisfaction: A review. Autonomous Agents and Multi-
geneous sensor networks. Int'l J. High Performance Computing Agent Systems 3(2): 185-207.
Applications. To appear. Also, Xerox Palo Alto Research Center Yokoo, M.; Durfec, E. H.; Ishida, T.; and Kuwabara, K.
Technical Report P2001-10113, May 2001. 1992. Distributed constraint satisfaction for formalizing dis-

Collin, Z.; Dechter, R.; and Katz, S. 1999. Self-stabilizing dis- tributed problem solving. In International Conference on Dis-
tributed constraint satisfaction. Chicago Journal of Theoretical tributed Computing Systems, 614-621.
Computer Science. Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K. 1998. The

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple distributed constraint satisfaction problem: Formalization and al-
faults. Artificial Intelligence 32(1):97-130. Reprinted in (Ham- gorithms. Knowledge and Data Engineering 10(5):673-685.
scher, Console, & de Kleer 1992). Zhang, Y., and Mackworth, A. K. 1992. Parallel and distributed

de Kleer, J., and Williams, B. C. 1989. Diagnosis with behavioral finite constraint satisfaction: Complexity, algorithms and exper-
modes. In Proceedings of JCAI-89, 1324-1330. Reprinted in iments. Technical Report TR-92-30, Department of Computer
(Hamscher, Console, & de Kleer 1992). Science, The University of British Columbia.

Debouk, R.; Lafortune, S.; and Teneketzis, D. 2000. Coordinated Zhao, F.; Koutsoukos, X.; Haussecker, H.; Reich, J.; Cheung, P.;
decentralized protocols for failure diagnosis of discrete event sys- and Picardi, C. 2001. Distributed monitoring of hybrid systems:
tems. Discrete Event Dynamic System: Theory and Applications A model-directed approach. In Proc. IJCAI'2001, 557-564.
10(1/2):33-86.

Goodrich, C., and Kurien, J. 2001. Continous measurements and
quantitative constraints - challenge problems for discrete model-
ing techniques. In Proceedings of iSAIRAS-2001.

Hamscher, W.; Console, L.; and de Kleer, J. 1992. Readings in
Model-Based Diagnosis. San Mateo, CA: Morgan Kaufmann.

Jackson, W.; Fromherz, M.; Biegelsen, D.; Reich, J.; and Gold-
berg, D. 2001. Constrained optimization based control of real
time large scale systems: Airject movement object system. In
Proceedings of the 40th IEEE Conference on Decision and Con-
trol, 4717-4720.

Kahn, J. M.; Katz, R. H.; and Pister, K. S. J. 1999. Mobile
networking for smart dust. In ACM/1EEE Intl. Conf on Mobile
Computing and Networking (MobiCom 99).

Kurien, J., and Nayak, P. P. 2000. Back to the future with consis-
tency based trajectory tracking. In Proceedings of AAAI-00.

Mosterman, P., and Biswas, G. 1997. Monitoring, prediction and
fault isolation in dynamic physical systems. In Proceedings of
AAAI-97, 100-105.

Nguyen, T., and Deville, Y. 1998. A distributed arc-consistency
algorithm. Science of Computer Programming 30(1-2):227-250.

Reiter, R. 1987. A theory of diagnosis from first principles. Artifi-
cial Intelligence 32(1):57-96. Reprinted in (Hamscher, Console,
& de Kleer 1992).

Rish, I.; Brodie, M.; and Ma, S. 2002. Efficient fault diagnosis
using probing. In Proceedings of the AAAI Spring Symposium
on Information Refinement and Revision .for Decision Making:
Modeling for Diagnostics, Prognostics and Prediction.

Roy, P. V. 1999. The separation of concerns in distributed pro-
gramming: Application to distribution structure and fault toler-
ance in mozart.

Sanchis, L. A. 1989. Multiple-way network partitioning. IEEE
Transactions on Computers 38(1):62-81.

Su, R.; Wonham, W. M.; Kurien, J.; and Koutsoukos, X. 2002.
Distributed diagnosis for qualitative systems. Technical Report
SPL-01-071, Palo Alto Research Center. Submitted to WODES
2002.

Sun Microsystems Inc. 1999. Jini architectural overview.

Waltz, D. L. 1975. Understanding line drawings of scenes with
shadows. In Winston, P. H., ed., The Psychology of Computer
Psion. McGraw-Hill. 19-91.

Williams, B. C., and Nayak, P. P. 1996. A model-based approach
to reactive self-configuring systems. In Procs. AAAI-96, 971-978.


