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Model-based Monitoring of Piecewise Continuous
Behaviors using Dynamic Uncertainty Space Partitioning'

Bernhard Rinner 2  and Ulrich Weiss 2

Abstract. Monitoring gains importance for many technical systems range of the uncertainty space. Discontinuous transitions in the sys-
such as robots, production lines or anti lock brakes. A monitoring tem's model may introduce non-monotonic behaviors in the state val-
system for technical systems must be able to deal with incomplete ues and, therefore, violate our assumption for the consistency check.
knowledge of the supervised system, to process noisy observations In order to preserve a conservative monitoring approach for hybrid
and to react within predefined time windows. This paper presents a systems, we have to extend our consistency check by a monotonic-
new approach to monitoring technical systems based on imprecise ity check. Whenever the monotonicity of the state values is given the
models. Our approach repeatedly partitions the uncertainty space of consistency check can be performed potentially resulting in a refu-
an imprecise model and checks the derived model's state for consis- tation of the imprecise model. If the monotonicity is not known the
tency with the measurements. Inconsistent partitions are then refuted consistency check is simply ignored and no model is refuted.
resulting in a smaller uncertainty space and a faster failure detection. The remainder of this paper is organized as follows. Section 2 de-
This paper further focuses on the extension of our basic approach scribes the technical details of uncertainty space partitioning and the
to monitoring systems that exhibit both continuous and discrete be- consistency check. Section 3 discusses the necessary extensions of
haviors. Our monitoring system has been implemented using COTS our approach to monitoring systems which exhibit both continuous
components and has been demonstrated in online monitoring of a and discrete behaviors. Section 4 presents experimental results of our
non-trivial heating system. monitoring approach in a real-world system with several changes of

a input value. A discussion and a summary of related work conclude
Keywords: fault detection; hybrid systems; imprecise models; this paper.

residual generation

2 MONITORING BASED ON UNCERTAINTY
1 INTRODUCTION SPACE PARTITIONING

The primary objective of a monitoring system is to detect abnormal 2.1 Overview
behaviors of a supervised system as soon as possible to avoid shut-
down or damage. Technical systems such as robots, production lines Monitoring methods based on imprecise models can reason with in-
or anti lock brakes provide a vast number of challenges for a monitor- complete knowledge in the model as well as with noisy measure-
ing system, i.e., it must be able to deal with incomplete knowledge ments. A main drawback of this approach, however, is that the en-

about the supervised system, to process noisy observations and to velopes may diverge very rapidly which delays or even inhibits a

react within predefined time windows, fault recognition. We have revised this interval approach to model-

A particularly important and widely-applied approach is model- based monitoring with the primary goal to keep the resulting en-
vetopes as small as possible.

based monitoring [6, 5] which relies on a comparison of the pre- p p
In our approach, we exploit the measurements from the supervised

dicted behavior of a model with the observed behavior of the super-

vised system. Our approach using dynamic uncertainty space par- system as soon as possible to refine the uncertainty in the model and

titioning [12] is based on imprecise models where the structure of the derived envelopes. The key step in our approach is to partition the
the models is known and the parameters may be imprecisely given uncertainty space of the model into several subspaces. The trajecto-

trie derived fro eachn subpac are theneer cheke for consistencyive
as numeric intervals. These parameter intervals span the uncertainty ries derived from each subspace are then checked for consistency

space of the model. From an imprecise model based on intervals only ecud thereinest ationsitini and istenc

bounds on the trajectory (envelopes) can be derived. Dynamic un- g g y

certainty space partitioning keeps the envelopes small by exploiting checking are continued resulting in a smaller uncertainty space of the

the measurements from the supervised system as soon as possible. model. When all subspace are refuted, a discrepancy between model

Whenever new measurements arrive residuals are generated at the prediction and observation has been recognized and a fault has been
"corner points" of the uncertainty space and checked for consistency detected.

by comparing their signs. This results in a fast fault detection [12].
The fundamental assumption of dynamic uncertainty space par- 2.2 Subspace Partitioning and Consistency

titioning is that the model's state values are monotonic within the Checking
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where xt is the state vector at discrete time t, ut is the input vec- r
tor at time t, Pt is the parameter vector at time t, Yt is the out- uYreasd Y(P)
put vector at time t, and g and f are vector functions. In an ex-
act model, Pt is a vector of real numbers. However, in a model
with uncertain parameters, Pt is replaced by a vector of intervals

Pt [ l,tl)p_, (pK . ,PKt)] , where K is the
number of uncertain parameters. A model with uncertain parameters, q,
i.e., an imprecise model, can therefore be described as:

5't = f (5't- 1, ut- 1, Pit- ) (2
Yýt = g(:Rt, Pit)(2

Equation 2 is the starting point of our approach. It defines an im-
precise model of the supervised system with K uncertain parame- Figure 1. Consistency check with one uncertain parameter p and three
ters. Thus, this model has a K-dimensional uncertainty space. In subspaces qj, q2, and q3 . The residuals at the corner points of subspace qi
order to divide this uncertainty space we have to define a partition are both negative, therefore, the model with the subspace q, is inconsistent

=t = [(-q,tq,,t), (q (2 t 4,t)]- T with qt C Pt. with the measurement. In subspace q2 , the residuals at the corner points have
A complete partitioning of the uncertainty space at any time t into different signs. Thus, q2 is consistent. For the parameter range of subspace

p i to ii() = Pt q3 the monotonicity assumption is violated. In this case, checking the
M partitions must satisfy the following condition U. t residuals' signs at the corner points is not feasible.
where m = 1,..., M. A model based on a partition of the uncer-
tainty space is referred to as subspace model. From the definition of
a partition, we can finally define the state of a subspace model m: holds for all elements j = 1,..., J.

Informally, Equation 7 checks whether the zero vector lies within
5K() f (:R(-, ut I ii(-() the "residual subspace" (see Figure 1). If this equation is violated, the

()() =g(5 (), i(-)) (3) subspace model m is refuted. This simple consistency check holds
also if not all elements of y are included in the measurements. In

With the monotonicity assumption of f and g with regard to the this case, a comparison with the missing elements is simply ignored.
parameters Pt over the range of the intervals, the (uncertain) state of Since this technique is based on the calculation of an exact state (at
a subspace model can be represented by the (exact) state of the corner corner points), we can use standard numerical methods for comput-
points of a subspace. The corner points of a subspace are defined as ing the solution of differential equations. Note that subspaces are
all combinations of upper and lower bounds of a partition i and can only refuted when they are genuinely inconsistent with the measure-
be represented as set Q(m) = {•)} with i = 1, ... 2 K Thus, an ments.

uncertainty space of dimension K results in 2 K corner points. The Due to the uncertainty in the parameters this method may result in
states at the corner points can be represented as set diverging envelopes. This deviation of the predicted value to the "cor-

rect" value over time is referred to as accumulation uncertainty. In

X(m-) = •x( -) fx(T) ufq(n) order to keep this deviation small we have also introduced a dynamic
y, - (in) ( tn) u (i) (n) , (4) partitioning of the subspace models. During monitoring consistent

{Yt,i Yt,= g txt , qt,i) subspaces are further partitioned resulting in smaller subspace mod-

where q(i) is an exact parameter vector at time t from the subspace els that potentially describe the supervised system more precisely
qt•i [12].

m and at corner i = 1,..., 2K of this subspace. Note, that x(-)
t,i

are state vectors and also , are output vectors with exact values. 3 MONITORING PIECEWISE CONTINUOUS
Note that this approach assumes that the parameters of the system BEHAVIORS
are constant, and are not varying in time. This assumption will be
discussed later. 3.1 Monotonicity at Transitions

This representation of an uncertain state is directly exploited by In order to extend our approach to monitoring piecewise continuous
our consistency check for a given subspace m. First, a residual is behaviors and discrete transitions, we must have a closer look at our
calculated for each state at a comer point using the measurements monotonicity assumption. Remember that the result of our consis-
at time t, i.e., () Yt, - Yt,i) where r(i) has the tency check is only valid if the state values within the subspace are

same dimension J as Yt,miea.sed and y('). Then, the minimum monotonic.Yt,i"

and maximum values of the residual are determined as In general the monotonicity of the state values with regard to the
(in) = . (inr) Iparameters is not guaranteed by the monotonicity of the system equa-

rtin) , nin{r } (5) tions f and g. The monotonicity is only given when the following
assumptions also hold:r(-) max{ }2 ) } (6)
1. the system input u does not change, and

with i = 1, ... 2 K, and j = 1,..., J. Finally, subspace model m 2. the initial values of a subspace model are the same over its com-

is checked for consistency simply by comparing the signs of •) plete uncertainty space.

and rt.(.i) The subspace model m is consistent with the measure- Both assumptions are important for monitoring discrete and con-
ments, iff tinuous behaviors. The first assumption is especially relevant for tran-

sgn(rtrij) :A sgn(rt,.,j) (7) sitions because they are often triggered by stepwise changes of the



system input (e.g., caused by operator actions). Such transitions vio-
late, therefore, the first assumption. The second assumption is a sim- X
ple consequence of the integration of the given differential equation: ± ± x(p)

x(t) = xto +.f_ ±c(r)dr (8)

to 4p

If the initial states xto are different at some corners in the sub-
space model, the state values xt may not be monotonic (even if k is
monotonic). However, monotonicity is guaranteed after some time. Figure 2. Monotonicity check with one state value and one parameter. To

As discussed above discontinuous transitions may result in a non- check the subspace model fbr monotonicity, the gradients of the state values
monotonicity of the state values with regard to the parameters (for with regard to the parameters are calculated at the corner points. In this

example, the subspace 41 is monotone and the subspace 42 violates the
a limited period of time), which in turn leads to an incorrect consis- monotonicity check.
tency check. Thus, to maintain a correct (and conservative) monitor-
ing technique we must extend the consistency check by a check for
monotonicity. If the monotonicity is not guaranteed the consistency use also a differential description of the system (f = k), the mono-
check is simply ignored and this subspace can not be refuted. At tonicity check does not significantly increase the computational load.
some time after the transition the subspace may become monotonic Note that matrix A is constant for linear systems.
again and the consistency check can be applied again.

4 THE MONOTONICITY CHECK IN A3.2 Checking for Monotonicity REAL-WORLD SYSTEM

The monotonicity of the state values for an individual subspace is
checked by the following method. We now examine the monotonicity behavior on a "real" technical

We define a matrix B(t, x, p) with the elements system which is comprised of three heating/cooling components
mounted on a thermal conductive plate. A process control com-

bO}(t,x,p) = &bi (t, x, p) (9) puter (B&R 2003) controls the three heating/cooling components.
, -Op) The measured samples as well as the control actions issued are trans-

where t is the time, x the state vector, and p the parameter vector ferred to the monitoring system via a RS 232 interface.

with its elements pj. We also define the matrix C(t, x, p) with the Our model which includes the three components with heating ele-

elements ments is given as

C (t, XP) = dxi(t,p) (10) / _'(qi1 - L,(TI -To) - L12 (TI - T2))ei t x )- dp).C
'-(qi2 + L12(Ti - T2) - L2(T2 - To))

The matrix C (t, x, p) is calculated by T C = + Li(Ti - T) - L2 (T - To) (14)

-L 2 .3 (T2 - T.3 ))
dC(t,x, p) (t,x,p)C(t,x,p)+B(t,x,p), (11) = L2 3(T2 -T3  L3(T3-To

dt

where C(0,x, p) =0 (the empty matrix), and the matrix where Tj is the temperature of the three components, Ci is the

A(t, x, p) is defined as mass of the components, qj is the heat flow into the components, Li
the thermal conductivity between the component i and the environ-

ajj (t, X, ) = &bij(t, x, p) (12) ment, Lij the thermal conductivity between the component i and j,

1x2) and To the temperature of the environment. We can reduce the com-
plexity of this model by exploiting the symmetric construction of the

The elements cj (t, x, p) give us the trend of the state value
xi(t, p) with regard to the parameter pj. This is exploited by our of five uncertain parameters.

monotonicity check: The state values of a subspace model are mono- The stae u vector is given as x = (T1 , T2, T)T, the input vector as

tonic, iff u = (qii, qi2, qj3, TO)T, and the output vector as y = (Ti +ni, T9, +

=( 2, T3•+ n+3 )T, where ni is the noise of each temperature sensor. Thesgn(cijmr•) = sgn(cijmr•) (13) noise parameters are also included in the uncertainty space resulting

holds for all state values i = 1,... , I and all directions of the in a total of eight uncertain parameters. Note that noise parameters
uncertainty space j = 1,... , K. cijmi, are the appropriate val- are not dynamically partitioned into smaller intervals and they are
ues of cj (t, x, p) at the comer min, and cjj,ra are the values of not considered by the monotonicity check.
cij (t, x, p) at the corner max of that subspace model (as described We have measured the input values with qoff = 1.24W and
with Equations 5 and 6). qo, = 34.8W (heating element is either turned off or turned on).

Figure 2 depicts the monotonicity check. In general, the informa- With an initial refinement step, we get the parameter intervals as
tion at the comer points is not sufficient to decide on monotonicity. L, = [0.12, 0.13], L2 = [0.15, 0.18], L12 = [0.62, 0.73], C1 =
However, assuming the monotonicity of the functions f and g with [51, 54], C2 = [61, 65]. The refinement step is performed in a single
regard to the parameter, the monotonicity check becomes sufficient, continuous behavior segment [12].

The calculation of the monotonicity check implies a numerical so- To examine the non-monotonic behavior in the system, we ob-
lution of the differential equation (Equation 12). However, since we serve the system after a transition, and count the subspace models,
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Figure 3. Measurements from the heating system used for monotonicity checking. The input H2 is generated by the process control computer and sent to the
monitoring system.

which are marked as non-monotonic. Over time, this gives us a pic- 7T
ture, how the transition produce non-monotonicity in the state values. 100.0,

We choose the following scenario:
50.0

Control state 1: Heat T 2 until T2 reaches 70. Then go to state 2. _oo_°_°Il _ ___ ___---,

Control state 2: Heat T 2, if T2 < 70. If t0 t0 t, 2 > L00sec, go to 50,0 -H

state 3. toio
Control state 3: Heat T2, if T 2 < 90. If t0 t0 t,0 3 >! IOOsec AT 2 > 20M

90, go to state 4. -- 00 1000 N
Control state 4: Do not heat. If T2 < 50, go to state 1.

Figure 5. The non-monotonicity after the switching period. Drawn are (as
Figure 3 plots the resulting measurements for this scenario. The same as in figure 4) the measurement and the envelopes of T2 , the heating

heating flag H2 (generated by the PCC) is used, to get a discrete flag H2 and the number of non-monotonic subspace models NM. Some
change of an input. To implement the heating element characteristic, subspace models are non-monotonic after the heating period.
we assume an additional mass Ch and a thermal conductivity L 2h

between component 2 and the heating mass: 5 DISCUSSION

I (32.82H2 - L2h (T•2 - T2 )) (15) In this paper, we have presented a model-based monitoring approach

h based on uncertainty space partitioning. The fundamental assump-
qi2 = 1.24 + L2h (Th2 - T2 ) (16) tion of this approach is the monotonicity of the state values with re-

gard to the range of the parameters. In systems which exhibit both
To demonstrate the non-monotonit effect after a stepwise change discrete and continuous behaviors the monotonicity can not be guar-

cofunt nputoenchemonotonic ityofall subspace models, ie.,w la nd E anteed only by the monotonicity of the vector functions. Thus, in or-
count non-monotonic subspace models, i.e., which violate Equa- der to apply our basic approach to monitor hybrid systems, we have
tion 13. Figure 4 shows a part of the scenario, where the temperature introduced a monotonicity check for the state values.
of component 2 is hold at 90 degree (control state 3). For this plot, we Note the difference of monitoring based on pre-calculated en-
have started with 128 subspace models, and no dynamic partitioning velopes with our approach. With pre-calculated envelopes, the en-
is introduced. Due to the discrete controller the heating is turned on
and off several times. At each transition about 40 subspace models velopes remain constant over the complete monitoring process. In

our approach, the envelopes may become smaller than the initial ones
are non-monotonic. An interesting observation in this figure is, that o a t

due to the refutation of inconsistent subspaces during monitoring.the non-monotonic subspaces disappear quickly, if the heating flag is This results in an earlier detection of faults. However, there is a sig-
turned off only for a short time. nificant increase in the computational load of subspace partitioning.

Figure 5 shows the number of the non-monotonic subspace models Our approach is based on computing the envelopes of differen-
after control state 3. The peak here is about 30 subspace models. It ta qain.Frcmlxmdlteoealmtm formntial equations. For complex models, the overall runtime of our mon-
shows, that non-monotonic subspace models are also existing for a itoring algorithm is dominated by solving the differential equations,
"longer" time period (here about 400 seconds) after the last discrete especially when a high-precise method such as Runge-Kutta is used.
change of an input. The computational complexity of our algorithm for a single time-step

Non-monotonic subspace models are not refuted, and, therefore, can be estimated as
do not make any contribution to decrease the uncertainty space. Al- O(M2' (p +/[)) (17)
though the number of non-monotonic subspace models are quite high
(about 50 percent of the current subspace models) for some times, it where M is the number of partitions, K is the number of uncertainty
has not a significantly influence to the refutation. The reason is, how- parameters, p is the time of the Runge-Kutta algorithm, and /i, is the
ever, that such peaks does not hold for long time, so the consistency time of the matrix multiplication according to Equation 11. The time
check soon becomes valid again. At this example the number of con- p strongly depends on the dynamic properties of the system, and for
sistent subspace models at the end of the scenario is about 20. high dynamic systems, the assumption p > it holds.
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Figure 4. First overview of the monotonicity of the technical system. Drawn are the measured Ta with its envelopes, H2 is the heating flag for the second
component, and NM is the number of the non-monotone subspace models. The discrete change of the input makes a directly effect to the monotonicity of the

state values.

This approach can also be seen as system identification, because further investigations on the monotonicity properties after a discon-
refuting subspace models reduces the uncertainty space, resulting in tinuous transition, especially in the context of non-linear systems,
smaller bounding intervals on the parameters. Measurement noise and (iii) the improvement of the dynamic uncertainty space parti-
can also be handled by introducing additional uncertainty parameters tioning.
into the model.
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