
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012699
TITLE: Observation sand Results Gained from the Jade Project

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Thirteenth International Workshop on Principles of Diagnosis
[DX-2002]

To order the complete compilation report, use: ADA405380

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012686 thru ADP012711

UNCLASSIFIED

Observations and Results Gained from the Jade Project

Wolfgang Mayer* and Markus Stumptnert and Dominik Wieland* and Franz Wotawat

Abstract debugger can be used to unambiguously locate faults through
an interactive debugging process, which is based on the iter-

This paper summarizes the work done in the course ative computation of diagnoses, measurement selection, and
of the Jade project, which deals with automatic de- input of additional observations by the user.
bugging of Java programs. Besides a brief intro- This work is organized as follows: The next section briefly
duction to the Jade project, models developed to describes the program models used by the Jade debugging
debug Java programs are evaluated and results are environment. Section 3 presents results obtained with the
presented. Furthermore, insights gained from the models introduced in Section 2. Section 4 analyzes the results
results are discussed and topics for further research from Section 3 and discusses some properties of the models.
are identified. In Section 5, we point out interesting topics for further re-

search. Section 6 briefly compares our approach to related
1 Introduction work. Finally, we conclude the paper.

For the last three years the Jade project has examined the ap-
plicability of model-based diagnosis (MBD) techniques to the 2 Program models
software debugging domain. In particular, the goals of Jade Since model-based diagnosis relies on the existence of a
were (1) to establish a general theory of model-based soft- logical model description of the underlying target system,
ware debugging with a focus on object-oriented programming one of the most important components of the Jade sys-
languages, (2) to describe the semantics of the Java program- tem are its models. Currently, the Jade debugger makes
ming language in terms of logical models usable for diagno- use of two model classes, dependency-based models and
sis, and (3) to develop an intelligent debugging environment value-based models. This section briefly describes these
for Java programs based on theoretic results, model types. More comprehensive descriptions can be found

The main practical achievement of the Jade project is the in [Stumptner et al., 2001; Wieland, 2001; Mayer, 2000;
interactive debugging environment, which allows us to effi- 20011.
ciently locate bugs in faulty Java programs. Currently, this Dependency-based models are based on the collection
debugger is fully functional with regard to nearly all aspects of all data and control dependencies of a given Java pro-
of the Java programming language and comes complete with gram. As an example, we look at a single statement Si,
a user-friendly GUI, the diagnosis system being integrated e.g., ±nt x=a*b;. Informally, the variable dependencies
into a "normal" interactive debugger interface. The Jade arising from this statement can be specified by Si : x +-
debugger limits the search space of bug candidates by com- {a, b}. A formal logical model can now automatically be
puting diagnoses for a given (incorrect) input/output behav- derived from this dependency. For our example it reads
ior. This is done by using model-based diagnosis techniques, -AB(Si) A ok(a) A ok(b) =# ok(x), where the predicate
which in some cases have been adapted to suit the needs of AB stands for the assumption that a certain statement is in-
an object-oriented debugging environment. Furthermore, the correct, i.e., behaves abnormally. The predicate ok(v) speci-

*Vienna University of Technology, Institute for In- fies that the value of variable v is correct without making use
formation Systems, Database and Artificial Intelligence of the concrete value of v. Observations for such a model
Group, Favoritenstrasse 9-11, A- 1040 Vienna, Austria, can be expressed by specifying the correctness or incorrect-
email: {mayerwieland}@dbai.tuwien.ac.at ness of a certain variable, e.g., -ok(x) in the above example.

tUniversity of South Australia, Advanced Computing Research In the course of the Jade project different dependency-based
Center, 5095 Mawson Lakes (Adelaide) SA, Australia, email: models have been created that vary in their levels of abstrac-
mst@cs.unisa.edu.au tion and the amount of information used during their creation.

tGraz University of Technology, Institute for Software These models are:
Technology, Inffeldgasse 16b/II, A-8010 Graz, Austria,
email: wotawa@ist.tu-graz.ac.at ETFDM: A dependency-based model, which makes use of

ýAuthors are listed in alphabetical order a concrete execution trace [Wieland, 2001].

Test series #TC Diagnosis Debugging _OS, 1 0 lS I D1 (%) lD 2 lD 2 (%) 2 IR T1 [OT (%)] T2 IT 2 (%)l
1 Adder 14 17 8.14 48 8.14 48 17 10 3.9 39 3.9 39

2 IfTest 10 3.5 2.2 (1.9) 63(54) 2.0 57 6.3 4.9 3 61 2.8 57
3 WhileTest 10 5.6 3.3 59 2.5 47 11.7 5.4 5.1 94 3.9 72
4 Numeric 9 4.6 4.6 100 4.6 100 6.2 3.6 4.4 120 5.3 147
5 Trafficlight 4 5 3 60 3 60 14 7.25 6.25 86 6.25 86
6 Library 5 26 20.6 (18) 79(69) 20 77 33 18.6 7.8 42 7.6 41

0 10 6.3(5.9) 63(59) 6 60 13.4 7.6 4.6 60 4.5 59

Table 1: Diagnosis and debugging results of the dependency-based models

DFDM: A dependency-based model, which only makes use ging and diagnostic accuracy. The tests were separated
of static (compile-time) information, such as the Java into two test sets, where one test set was used to corn-
source code and the programming language seman- pare the dependency-based models, whereas the other set
tics [Stumptner et al., 2001; Wieland, 20011. was used to evaluate the value-based models. A compar-

SFDM: Another dependency-based model, which is based ison between the dependency-based models and the value-

on either the ETFDM or the DFDM and involves a based models can be found in [Stumptner et al., 20011.

higher level of abstraction by removing the distinction Most of the example programs can be obtained from

between object locations and references [Stumptner et http://www.dbai.tuwien.ac.at/proj/Jade/.
al., 2001; Wieland, 20011. 3.1 Dependency-based models

Value-based models are models which make use of The first test series aims at evaluating the performance of the
concrete execution values and propagate these values from use depende s m s , ine perfo man d
the model's inputs to its outputs and (if possible) from the use dependenyb e mod e i e., s, ETFD hs,
model's outputs to its inputs. A simple value-based model mSFDMs. Furthermore, we compare the results scored by these
for the above example statement reads -AB (Si) I- x = a * b, model types. In particular, the test series has two main goals:where x, a, and b stand for concrete variable values as com:- (1) to examine the ability of the Jlade debugger to reduce the
puted at run-time. In the case of value-based models observa- search space of bug candidates. In other words, we test which
tions can be expressed by specifying the concrete value of a parts of a Java program can automatically be excluded fromcertain variable, e.g., x = 6 in the above example. The fade the fault localization process in a single diagnosis step andsystemn curiablently oeaesg., on the ftove vxampluhe-based which parts of the search space remain for further debugging
model types: actions. (2) to evaluate the debugging performance of thetJade tool, i.e., determining the amount of user interaction
VBM: A value-based model, which makes use of not only needed to unambiguously locate a fault in a Java program.

the underlying program dependencies, but also concrete In order to carry out these tests we implement a couple
evaluation values and the full programming language se- of test programs demonstrating simple variable dependencies
mantics [Mayer, 2000]. (simulating a binary adder, numeric examples), making use of

LF-VBM: A second value-based model, which is based control structures (if and while statements), and finally mul-
on the unfolded source code for a particular program tiple objects and instance fields together with linked lists and
run [Mayer, 20011. In particular, the loops are expanded general processing (a small library application). We then con-
into a set of nested conditional statements, where the struct test cases for each program P by specifying the correct
conditional statements are modeled specially in order to input/output behavior of P and installing a single-fault into
provide better backward reasoning capabilities. P. Overall 52 test cases are constructed and used for the eval-

uation of the system's performance. Table 1 shows all testsAlthough the expressiveness of the individual models is not carried out with each row summarizing all tests performed in

exactly the same, all models support a considerable subset of arsie test eris Columna#T indenotesth n erfofmtests

the Java programming language. Currently, exception han- of the respective test series.

dling and programs using multiple threads are not supported. The diagnostic performance of the Jade system in the con-

Furthermore, the value-based models do not support recursive

method calls. The models are designed to locate functional text of dependency-based models is given in columns 4 to 8
of Table 1. Column OS 1 shows the average number of top-faults, e.g. wrong operators or reversed conditions. They level statements of the tested programs in a single test series.

cannot reliably locate structural faults or more severe defects, Since the Jade tool performs hierarchical debugging, only
such as wrong algorithms or data structures, these top-level statements (this excludes statements nested

3 Rin loops and selection statements) can be identified as the
3 Results source of a fault in a single diagnosis step. Columns OD 1

In this section we describe results obtained by applying and 0D 2 present the number of top-level statements, which
the models introduced above to a set of example pro- remain as possible fault candidates after a single diagnosis
grams and compare them with respect to their debug- step has been performed using DFDMs and ETFDMs, re-

spectively. In other words, the difference between OS 1 and Program Stm VBM LF-VBM
OD 1 (0D 2) shows the number of statements, which can be C D % C D H S %
eliminated from the debugging scope in a single diagnosis BinSearch 27 16 6 63 43 1 1 2 8
step. Columns OD1 (%) and 0D 2 (%) show the number of Binomial 76 26 9 42 255 24 1 1 32
remaining statements for both model types in relation to the BoundedSum 16 14 4 38 19 1 0 2 38
total number of top-level statement, i.e., OS 1 . These columns BubbleSort 15 10 6 93 34 7 1 1 47
present the percentage of statements, which remain as possi- FindPair 5 4 4 100 10 1 0 2 80
ble fault candidates for further debugging actions. All tests FindPositive2 17 13 3 41 20 2 1 1 12
are also performed with the simplified versions of the test FindPositive3 17 13 3 41 20 2 1 1 12
programs' DFDMs. In cases where these tests yield results Hamming 27 19 11 70 95 9 1 1 33
different from tests with the full DFDMs, the results obtained Huffman 64 22 9 80 161 9 0 (2) (25)
from the SFDMs are given in brackets. Note that no tests are Huffman 64 22 6 59 164 12 1 1 19
carried out with simplified versions of ETFDMs, since these Intersection 95 31 12 84 155 8 1 1 5
models are not yet fully supported by the Jade debugging Library 24 21 6 38 36 5 0 2 34
tool. Matrix 71 21 21 100 127 37 1 1 52

The right side of Table 1 (columns 9 to 14) depicts the MaxSearch2 21 16 3 38 37 2 0 2 19
debugging performance of the Jade debugging environment. MultLoops 21 12 2 19 27 4 2 3 24
Since we are now interested in the exact localization of faults, MultiSet 97 55 8 28 283 1 0 (2) (11)
we no longer deal with top-level statement only, but also take Permutation 24 17 14 96 29 3 1 1 13
statements nested in loop and selection statements into con- PermutationO 26 19 12 69 33 1 1 1 4
sideration. Column 0S 2 shows the average number of all Permutationl 26 19 12 69 32 8 0 3 100
statements of the respective tested program. Column OR in- Permutation2 26 19 15 85 33 9 1 1 35
cludes the average indices of those statements, in which the Permutation3 24 19 12 67 33 2 0 3 50
single fault has been installed during the test design phase. Polynom 120 64 14 24 189 26 0 (3) (13)
If we argue that with traditional debugging tools one has to SearchTree 84 41 41 100 140 45 0 (1) (54)
step through the code manually statement by statement un- SkipEqual 5 4 4 100 11 2 1 1 40
til the bug is located, the values in column OR provide a Stat 23 17 3 39 42 2 0 4 48
reasonable reference value for the amount of user interac- Sum 5 4 3 80 10 3 1 1 40
tion needed by the Jade system to exactly locate a fault. SumPowers 21 12 8 81 36 5 1 1 24
The latter is presented in columns OT1 (DFDMs) and 0T 2 0 39 20 9 65 77 8 0.6 (1.6) (32)
(ETFDMs). Columns OT1 (%) and 0T 2 (%) show the av-
erage number of user interaction relative to the average in-
dex of the buggy statement, i.e., OT1 (%) = OT 1 /1R and Table 2: Diagnosis results of the value-based models
oT 2 (%) = oT 2 /ZR.

3.2 Value-based models statements in the program, C represents the number of com-
ponents in the generated model. D stands for the number

In a second step we test the diagnostic performance of the of diagnoses of minimal cardinality that are obtained and H
more detailed and semantically stronger value-based models, represents the number of diagnoses from D that actually in-
i.e., VBMs and LF-VBMs. For this task we implement a sec- clude the seeded fault. S denotes the cardinality at which
ond set of example programs which is designed especially the diagnostic process is stopped because the seeded fault has
to investigate the specific advantages and disadvantages of been located. Finally, the %-column lists the percentage of
the value-based model variants. Whereas some examples are the statements that have to be examined in the worst case un-
small and specifically designed to demonstrate different as- til the seeded fault is found. Here it is assumed that the di-
pects of the models, most of the example programs imple- agnoses are presented with increasing cardinality. Note that
ment well-known algorithms which could be part of larger these numbers can further be improved by suitable heuristics,
programs. For example, programs executing a binary search which present the diagnoses according to their 'likelihood'
procedure, computing the Huffman encoding of an array of to explain the faults. For the VBM, the columns H and S
characters, or applying Gauss elimination are part of this test are omitted because their value is always equal to one. Num-
suite. Similar to the tests carried out with the dependency- bers in parentheses denote cases where the faults cannot be
based models, faults were seeded into each program such that located because the maximum time allowed for diagnosis is
each test case is influenced by one fault. Again, we assume exceeded. In these cases the numbers are lower bounds to
that the faulty program is a close variant of the correct pro- the actual results that would be obtained when continuing the
gram. We do not deal with wrong choice of algorithms, data diagnostic process to its completion.
structures or similar major design defects.

The diagnostic experiments are performed by specifying 4 Discussion
the inputs of the program together with the expected results
as observations. A summary report of the obtained results Based on the results from Section 3, in this section we dis-
for each example program is depicted in Table 2. Several as- cuss some important properties of the proposed models and
pects of the examples are listed: Stm denotes the number of present insights gained during the Jade project.

From the results it can be seen that the amount of code sults with programs, which can hardly be diagnosed using
that has to be analyzed in order to locate a fault can be re- dependency-based approaches only. [Stumptner et al., 200 11
duced significantly with all models. If we look at Table 1 we indicates that in general value-based models are superior to
find that in the test series carried out with dependency-based their dependency-based counterparts. Therefore, although
models approximately 40% of the top-level statements can be VBMs have the drawbacks of their high computational re-
eliminated from the debugging scope, leaving some 60% for quirements, VBMs have proved as satisfying general-purpose
further debugging actions. Interestingly, the average results alternatives and complements to dependency-based models.
obtained with different dependency-based model types were Loop Handling A negative aspect of the dependency-
quite similar with slight advantages to ETFDMs (in compar- based models and the VBM is the fact that these models pro-
ison to DFDMs) and full model versions (in comparison to vide good results for programs without loops but fail to com-
SFDMs). In the case of value-based models, the results lie pute satisfying diagnoses for programs that consist of large
in the same order of magnitude. In particular, between 40 loop statements. This is due to the fact that loop statements
and 80% of all statements have to be checked, with the av- are modeled hierarchically and discrimination between state-
erage being at 65%. Note that this does not indicate a better ments inside the loops is not possible. To overcome these
performance of dependency-based models in comparison to problems, the LF-VBM expands loops into a set of nested
value-based models, since completely different test programs conditional statements, with separate assumption variables
were used to evaluate the different model types. In particular, for each statement. The number of conditional statements is
the test series with the value-based variants in general used derived from the initial execution of the test cases. Therefore,
longer and more complex test methods. These methods result the model is able to reason about the statements inside the
in only very few statements being removed from the suspect loop independently, without considering the whole loop as an
code in case of dependency-based models, but still yield re- entity. This provides a finer-grained resolution, which avoids
markable results with VBMs. For a more detailed comparison the problem of large diagnosis entities mentioned above.
of dependency-based and value-based models see [Stumptner As can be seen in Table 2, switching from the VBM to
et al., 20011. the LF-VBM leads to much better results. In particular, the

Dependency-based models One major advantage of percentage of statements that has to be considered until the
dependency-based models is that they can be constructed and fault is located is reduced to 32-43%1 on average, which is
applied to actual diagnosis problems very quickly. This is quite low compared to the percentage of statements that was
also true for medium- to large-size programs. They are also computed by the VBM. For the LF-VBM it is no longer the
easier to handle than their value-based counterparts, since case that every faulty statement is included in a diagnosis of
they require observations only to state whether the value of cardinality one (as with the VBM). Therefore, the cardinal-
a certain variable is correct or not, whereas with value-based ity up to which diagnoses have to be computed is likely to
models concrete execution values are needed. Generally, the be greater than one, depending on the type of fault and the
use of ETFDMs results in fewer single diagnoses, because program structure. For most example programs the diagnosis
concrete execution traces are used during the collection of cardinality required to locate a fault is less than or equal to
the dependencies. This becomes especially apparent for pro- two, which is usually computationally feasible when consid-
grams, which include loop and selection statements or recur- ering small- to medium-sized programs. Another aspect of
sive method calls. The improved debugging performance of the LF-VBM that keeps the model from being blindly appli-
ETFDMs in comparison to DFDMs comes with longer mod- cable is the fact that the strong fault modes of the conditional
eling times, since now the creation of a model not only de- statements decouple the selection of the conditional branch
pends on the underlying source code, but also on the ex- to be executed from the evaluation of the selection condition.
istence of an execution trace, whose creation requires run- Therefore, faults in the condition cannot be located using the
ning the program. It was also shown that the full versions of LF-VBM. Fortunately, such faults can in many cases be found
DFDMs and ETFDMs are superior to their simplified coun- with the VBM alone and do not require the LF-VBM to be
terparts. This is, because they model object locations and applied.
object references by separate model constructs and thus pro- In case of dependency-based models additional tests have
vide a finer-grained model architecture. On the other hand the been carried out to examine the overall debugging perfor-
computation of diagnoses with full model versions is compu- mance of the Jade tool. As Table 1 indicates, the average
tationally more expensive. Further on, the specification of number of user interactions needed by the Jade tool is sig-
observations is easier with simplified model versions. nificantly smaller than the amount of user interactions needed

The Value-Based Model However, dependency-based by traditional debugging tools. On average some 40% of user
models did not prove to be an optimal solution for all tested interactions can be saved using the Jade tool. In general, the
programs due to their lack of run-time information. Note direct comparison of user interactions is problematic, since
that even ETFDMs do not make use of concrete evaluation different user interactions require different types of inputs
values directly, but only extract information about executed from the user, which vary in time, complexity, and knowledge
branches and numbers of iterations of loops from concrete
execution traces. Therefore, the VBM was developed, which 143% is obtained when assuming the whole program has to be
makes use of the full programming language semantics and examined for the examples where no exact solution was found. Bet-
propagates concrete evaluation values through the system. As ter estimates (37%) are obtained when taking the percentages ob-
already mentioned, in many cases VBMs score satisfying re- tained with the VBM as upper bounds.

needed by the user. The numbers given in Table 1 therefore have to be developed and evaluated. Based on these criteria,
include all user interaction performed by the Jade system. If the most efficient model can be selected based on the pro-
only variable queries, i.e., the input of a new observation in gram structure, the test cases and the diagnoses computed so
the form of the value of a certain variable at a given source far. This approach overcomes the drawbacks of the models,
code position, are counted, the average amount of user inter- as well as reduces the computational complexity of the di-
action amounts to only 355% of the user interaction needed by agnostic process, because models are only instantiated when
traditional debugging tools. Since strictly speaking all other needed. To select candidates for further inspection, suitable
kinds of user interactions are not included in the reference criteria for ranking diagnoses according to their likelihood to
value of traditional debuggers, this lower value probably pro- explain the fault have to be developed.
vides a more accurate measurement of the debugging perfor-
mance of the Jade system. As far as the fault classes which can be located with the

Comparison If we compare the results obtained with Jade environment are concerned, it should already have be-
the Jade system to results obtained with other approaches come clear that we are interested in source code bugs which
for program analysis, it can be seen that the approaches de- become observable as failures or output errors and manifest
scribed herein are comparable and in many cases even supe- themselves as logical faults in the analyzed source code. This
rior to other techniques. When comparing our approach to explicitly excludes compile-time and run-time failures as well
slicing [Weiser, 19841, we find that with dependency-based as faults leading to the non-termination of a program. For a
models we yield similar results to those obtained by slicing discussion about the fault classes handled by the Jade sys-
techniques. When value-based models are used, our results tem we divide the class of analyzed faults into functional and
are much better, because for most of the example programs structural faults. Functional faults are all faults, which result
used during the evaluation of the value-based variants, static in a certain variable storing an incorrect value in at least one
slicing is not able to eliminate any statement. This can be possible evaluation trace. In particular, these faults include
explained by the different levels of abstraction applied by the use of incorrect operators or the specification of incor-
dependency-based models and slicing on the one hand and rect literals, such as integer or boolean constants. Since these
value-based diagnosis techniques on the other hand. The faults do not alter the structure of the program, faults belong-
value-based approach is somewhat closer to the actual execu- ing to this class can generally be found with the Jade de-
tion semantics of the program than with both, program slicing bugging environment, once they become observable through
and dependency-based models. Another improvement with a test case leading to an incorrect variable value.
respect to slicing is that we can provide more information to
the user, if a loop has to be executed a different number of Structural faults, on the other hand, are source code bugs
times to explain a fault. Those examples where no statements which alter the structure of the underlying program. This is
of the program can be eliminated are programs that are either the case if the dependency graph [Ferrante et al., 19871 of
very short (consisting of only an initialization statement and the program is not structurally equivalent to the dependency
a loop) or programs where almost every part of the program graph of the correct program. The result of these faults is
depends on every other part (for example a binary search tree, that the system description, i.e., the model, differs from the
where the program execution depends on the values that were mystem scral obtan by the lorcte undgram. rtaininserted previously). moment structural faults can only be located under certain

circumstances. A discussion about different classes of struc-
tural faults and how they are handled by the Jade tool is given

5 Ongoing Work in [Wieland, 20011. In the future special-purpose models have

Although the results presented in the previous section are to be developed that handle different kinds of structural faults.

already promising, there remain topics for further research. As already discussed, these models then have to be combined

This section discusses possible enhancements of the models, with the general-purpose models described herein to increase
not only the performance of the Jade debugger, but also the

to avoid some of the drawbacks mentioned in Section 4.

First, no single model is able to efficiently locate faults. number of fault classes handled by the tool.

Rather, a combination of models has to be applied to perform To aid the programmer in correcting a fault, an intelligent
efficient reasoning. This multi-model-reasoning approach is debugging environment should be able to provide possible
not only applicable to a single level of abstraction, as in corrections for a faulty part of a program. As described in
the case of the VBM and the LF-VBM, but can also be ap- [Stumptner and Wotawa, 19991, after a single diagnosis has
plied using multiple levels of abstraction or types of models. been selected for further investigation, possible replacement
For example, the dependency-based models can be used to expressions for the faulty expression can be inferred and pre-
narrow the region of interest and then apply combinations sented as corrections.
of the VBM and the LF-VBM to exactly locate the fault.
Also, models dealing with structural faults [Jackson, 1995; Finally, intuitive means for specifying the expected behav-
Wotawa, 20001 or various special-purpose models (e.g., to ior of a program have to be developed. This includes the
locate faults in loops, selection statements, etc...) could be construction of an intuitive graphical user-interface through
incorporated in such a framework, which the user can easily switch between different levels of

For this approach to be applicable, suitable strategies to de- abstraction, test case specification, and other representations
cide under which conditions to apply certain kinds of models of the program (e.g., visualizations of heap structures, etc.).

6 Related Work discussed. Incorporating these models in a system with multi-
model reasoning capability and ranking criteria for diagnoses

This section briefly summarizes related research in the area holds the promise of wider applicability and even better dis-
of program debugging and compares the approaches to our crimination. As our approach clearly outperforms classi-
work. cal debugging techniques for many example programs, the

Weiser's slicing approach [Weiser, 19841 is probably the model-based approach can be considered a promising tech-
most widely known approach to improve program debugging. nique that should be further researched to obtain a generally
His approach relies on the program dependencies and tries to applicable debugging tool.
eliminate those parts of a program that cannot contribute to an
observed faulty program behavior. This approach is compara- Acknowledgments
ble to the dependency-based models presented here. Details
on the relationship between these approaches can be found This work was partially supported by the Austrian Science
in [Wotawa, 20011. Fund project P12344-INF.

Shapiro [Shapiro, 19831 introduces a theoretical frame-
work for algorithmic program debugging and several algo- References
rithms suited to debug logic programs. However, the ap-
proach suffers from heavy user interaction, which is unde- [Bond, 1994] Gregory W. Bond. Logic Programs for
sirable when debugging larger programs. In addition, the al- Consistency-Based Diagnosis. PhD thesis, Carleton Uni-
gorithms cannot locate faults inside procedures. versity, Faculty of Engineering, Ottawa, Canada, 1994.

In [Console et al., 19931 the application of model-based di- [Burnell and Horvitz, 19951 Lisa Burnell and Eric Horvitz.
agnosis to the software domain has been proposed for the first Structure and Chance: Melding Logic and Probability
time. This paper introduces a way of using MBD by remov- for Software Debugging. Communications of the ACM,
ing and adding Horn clauses to Prolog programs. Extensions 38(3):31 - 41, 1995.
of this approach were developed in [Bond, 19941. [Console et al., 1993] Luca Console, Gerhard Friedrich, and

Liver [Liver, 19941 discusses the use of a functional repre- Daniele Theseider Dupr& Model-based diagnosis meets
sentation in the debugging of software to reduce the problem error diagnosis in logic programs. In Proceedings 1 3 t h
of structural faults in software, where statements are missing International Joint Conf on Artificial Intelligence, pages
or superfluous parts of a program are the source of errors. The 1494-1499, Chambery, August 1993.
approach relies on symbolic execution of a functional speci-
fication, which has to be provided by the user. [Ferrante et al., 1987] Jeanne Ferrante, Karl J. Ottenstein,

Hunt [Hunt, 1998] applies the idea of MBD to the domain and Joe D. Warren. The program dependence graph and
of object-oriented languages by building models for programs its use in optimization. ACM Transactions on Program-
written in Smalltalk. The model used in this work is based ming Languages and Systems, 9(3):319-349, 1987.
on dependencies between instance variables and method calls [Friedrich et al., 1999] Gerhard Friedrich, Markus Stumpt-
that modify them. In contrast to our approach, [Hunt, 19981 ner, and Franz Wotawa. Model-based diagnosis of hard-
is limited to single faults. ware designs. Artificial Intelligence, 111(2):3-39, July

MBD concepts have also been applied to VLSI design lan- 1999.
guages, in particular VHDL [Friedrich et al., 19991, using pa- [Hunt, 19981 John Hunt. Model-Based Software Diagnosis.
pers describe (abstract) models used for locating a concurrent
statement, e.g., a VHDL process, responsible for a detected Applied Artificial Intelligence, 12(4):289-308, 1998.
misbehavior. The Jade project builds on this work, but ex- [Jackson, 19951 Daniel Jackson. Aspect: Detecting Bugs
tends the previous approaches by modeling of object-oriented with Abstract Dependences. ACM Transactions on Soft-
features, ware Engineering and Methodology, 4(2): 109-145, April

Finally, Burnell and Horvitz [Burnell and Horvitz, 19951 1995.
present another approach to program debugging using prob- [Liver, 19941 Beat Liver. Modeling software systems for di-
ability measurements to guide diagnosis. As this approach agnosis. In Proceedings of the Fifth International Work-
relies on belief networks, which have to be initialized by do- shop on Principles of Diagnosis, pages 179-184, New
main experts, it is doubtable whether this approach can be Paltz, NY, October 1994.
applied to arbitrary programs. [Mayer, 20001 Wolfgang Mayer. Modellbasierte Diagnose

von Java-Programmen, Entwurf und Implementierung
7 Conclusion eines wertbasierten Modells. Master's thesis, Institut fdr
Building intelligent debugging aids for programmers is an im- Informationssysteme, Abteilung ffir Datenbanken und Ar-

Builingintelignt dbugingtificial Intelligence, TU Wien, 2000. (only available in
portant goal repeatedly attacked by researchers during the last German).

decades. Unfortunately, no generally applicable solution has German).

been found so far. In this paper we summarize the work done [Mayer, 200 11 Wolfgang Mayer. Evaluation of Value-Based
during the Jade project and discuss some results obtained Models for Java Debugging. Technical report, Technische
using the introduced model types. Besides the results, spe- Universitit Wien, Institut f/ir Informationssysteme 184/2,
cific advantages and disadvantages of each of the models are Paniglgasse 16, A-1040 Wien, Austria, 2001.

[Shapiro, 19831 Ehud Shapiro. Algorithmic Program Debug-
ging. MIT Press, Cambridge, Massachusetts, 1983.

[Stumptner and Wotawa, 1999] Markus Stumptner and
Franz Wotawa. Debugging Functional Programs. In
Proceedings 16 t h International Joint Conf on Artificial
Intelligence, pages 1074-1079, Stockholm, Sweden,
August 1999.

[Stumptner et al., 2001] Markus Stumptner, Dominik
Wieland, and Franz Wotawa. Comparing Two Models
for Software Debugging. In Proceedings of the Joint
German/Austrian Conference on Artificial Intelligence
(KI), Vienna, Austria, 2001.

[Weiser, 19841 Mark Weiser. Program slicing. IEEE Trans-
actions on Software Engineering, 10(4):352-357, July
1984.

[Wieland, 20011 Dominik Wieland. Model-Based Debug-
ging of Java Programs Using Dependencies. PhD
thesis, Vienna University of Technology, Computer
Science Department, Institute of Information Systems
(184), Database and Artificial Intelligence Group (184/2),
November 2001.

[Wotawa, 2000] Franz Wotawa. Debugging VHDL Designs
using Model-Based Reasoning. Artificial Intelligence in
Engineering, 14(4):331-351,2000.

[Wotawa, 20011 Franz Wotawa. On the Relationship be-
tween Model-based Debugging and Programm Mutation.
In Proceedings of the Twelfth International Workshop on
Principles of Diagnosis, Sansicario, Italy, 2001.

