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Relaxed states in plasmas
- non-neutral and diamagnetic

plasmas

Z. Yoshida and H. Saitoh

Graduate School of Frontier Sciences, The University of Tokyo,
Hongo, Tokyo 113-0033, Japan

Abstract. The aim of this paper is to present a unified representation of relaxed
states generated in various type of plasma systems. Self-organization of struc-
ture is the central them of the recent theory of relaxation phenomena. Invoking
fluid mechanical models, many authors have discussed various relaxed states that
constitute a special class of macroscopic equilibria (force-balance states). The
present theory, however, starts from a kinetic model of relaxed state, which en-
compasses a variety of structures including both electrostatic and electromagnetic
configurations. This model also describes the macroscopic relaxed state charac-
terized by the Beltrami and (generalized) Bernoulli conditions, which gives strong
diamagnetism.

I INTRODUCTION

Plasmas, viewed as a fluid, can produce a variety of structures. In the ideal
(dissipation-less) model of fluid mechanics, the equilibrium (force-balance)
equations may have infinite number of solutions, because the hyperbolic part of
the partial differential equation demands Cauchy data that specify the profiles
of internal fields. To select a physically realized structure from the total set
of ideal equilibrium solutions, we invoke the effect of small dissipations. In
approximately collision-less plasmas, it is believed that the effect of dissipation
does not modify the equilibrium structure, while it chooses a most preferential
profile that can minimize the influence of the dissipation. This stands reason
to start from an ideal model, and then search for a relaxed state.

Many authors have discussed various relaxed states that constitute a spe-
cial class of macroscopic (fluid mechanical) equilibria. The pioneering work in
this context was J.B. Taylor's model of the RFP (reversed-field pinch) plasma
[1]. The present paper, however, presents a kinetic model of self-consistent re-
laxed states that are characterized by some rugged constants of motion. Both
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electrostatic and magnetic confinements are discussed on a unified basis. This
model also derives the macroscopic relaxed state characterized by the Belt rami
and (generalized) Bernoulli conditions, which gives strong diamagnetism.

II KINETIC EQUILIBRIA

A Steady states in kinetic theory and relaxed states

We begin with formulating the equilibrium (steady state) in the phase space
of kinetic theory that is spanned by x (coordinate) and p (canonical momen-
tum). Let f(x,p, t) be the distribution function. We consider a collision-less
plasma. The evolution of f obeys the Liouville equation (Vlasov equation)

d), + f{tt, f I = 0, (1)

where H is the Hamiltonian of a test particle moving in a mean field, and
{ , } is the Poisson bracket. The mean field A and 0 must be consistent to f
through Maxwell's equations. We consider a stationary state, we assume thai
H is independent to t. Then, a steady state for (1) satisfies

{H,f) = 0. (2)

The stationary equation (2) has infinite number of solutions. Let, aj be a
time-independent quantity that commutes with 11, i.e., {H, aj} = 0. The H
itself satisfies this condition. Suppose that we know N of such quantities (con-
stants of motion). Using them., we generate a distribution (F is an arbitrary
smooth function)

f = F(al, -.. aN). (3)

If N is equal to the degree of freedom, the system is "integrable", and (3)
gives the complete solution. Our motivation in this work, however, is to find a
special class of solutions that are robust (rugged) against various perturbations
destroying the invariance of fragile constants of motion. Only a small number
of them are robust in a sense that the ensemble averages (or the total sums)
of such quantities are conserved.

The most robust steady state is the Boltzmann distribution

f = Z-16-1311 (4)

where Z (normalization factor) and /3 (inverse temperature, or a Lagrange
multiplier) are positive constants. We obtain this equilibrium by maximizing
the entropy over an ensemble that is characterized by a given total energy
(i.e., a constant-energy set). If we invoke another constant G (in an ensemble
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average sense), we must maximize the entropy on the ensemble defined both
by H and G. With restricting the totals of H and G, we obtain

f = Z-1e-)3H(5)

where -y is the second Lagrange multiplier. Including some additional con-
stants of motion, we obtain a maximum entropy solution that is more re-
stricted than the Boltzmann equilibrium. Such a solution remains in equilib-
rium as far as the additional constraints work.

B Equilibrium with momentum conservation

A symmetry of the system warrants the conservation of the corresponding
canonical momentum. Suppose that the Lagrangean L is independent of a
coordinate x0 , as well as t. Then, the Hamiltonian H and the momentum
po = UL/ax' are conserved ('is the time derivative). With an arbitrary
constant C, we define

H = H - Cpo, (6)

and consider a distribution [see (5)]

f Z-le-fl = Z-le-6(H-Cpo). (7)

This solution of (2) has the following important connotation that provides a
physical meaning for the parameter C.

When we discuss a distribution function f, we consider an ensemble of
particles, which is characterized by the sum of the Hamiltonian over the all
particles. We invoke the conservation of the total energy, but not the energy
of each particle. We apply the same framework for the momentum p0 in (7).
We do not assume the conservation of H or p0 for each particle, while we
consider an ensemble determined by the totals of these quantities. Then, the
physical meaning of H becomes essential. Indeed, we can interpret H as the
Hamiltonian on a moving frame, and hence, f = Z-le-13  is an invariant
of the collision operator (the average momentum is unchanged by collisions).
This robustness of p0 warrants the use of P0 in determining the ensemble.

Let us revisit the change of variables in general inhomogeneous coordi-
nate transform, and see the relation between H and H. Let U be a certain
temporary-constant velocity field. We write the velocity v of the laboratory
frame as

V = iý + U, (8)

and set 5i' = i). The Lagrangean of a charged particle (q: charge, m: mass)
can be written as

L = -+U + q(i, + U). A - qO.
2
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The canonical momentum and the HIamiltonian are

L = m (,b + U) + qA = mi + qA, (9)

Hf= j,- pqAI'- 'U' + qý= rný3 - W+ ý (10)
2m I 2 2 2

where

A =A + "U, ý=O-U.A. (1
q

The effective vector potential A includes an additional term that yields the
Coriolis force. The scalar potential € has received the (nonrelativistic) Lorentz
transform. In (10), -mU 2/2 is the centrifugal potential. The transform of
the Hamiltonian and the momentum can be written as

H H- U. (mv + qA) = H - U .p, (12)

= p my + qA. (13)

Suppose that a component po of the momentum is a constant of motion.
Comparing (6) and (12), we observe

fI = H - Cpo=/, (14)

which implies that ft is the Hamiltonian in the moving coordinate, and C is
the velocity (or the angular velocity if we define P with respect to an angle) of
the frame. Hence, the solution (7) represents the "thermal equilibrium" in the
moving frame. Let us review some well-known examples. The Hamiltonian H
includes the potentials 0 and A that, must be self-consistently determined by
the field equation including f.

(1) Electrostatic equilibrium
When the magnetic field produced by the internal current is negligibly small

in comparison with the externally applied magnetic field, we can use the elec-
trostatic model; A is a prescribed field, while 0 is determined by the Poisson
equation

-AO = -n. (15)
(15

Using (10), the density n is given by

n(x) = If(*, v)dv = noe- (16)

where no = Z_' f e-_mv 2 /2 dv.
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Here, we review the well-known "thermal equilibrium" of a cylindrical
single-species plasma confined in a homogeneous magnetic field (B = Be,).
Let r-O-z denote the cylindrical coordinates. By the symmetry D/00 = 0,
the canonical angular momentum po = aL/O'0 = mrvo + qrAo is conserved.

Hence, h = It - wpo (w = constant) is a constant of motion. This ft is the
Hamiltonian in a rigid rotation frame. Indeed, setting U = wreo (w is the
angular velocity of the rigid rotation), (10) reads

Ht = 22 - M (rw)2 - qrwAo + qO H. (17)

The equilibrium f(iH) = Z-e-Oft represents a drift Maxwellian with a con-
stant angular velocity w. Here, we seek a solution that has a constant density

inside the plasma, i.e.,

f = M2 i -q 12. (18)

The vector potential for the homogeneous longitudinal magnetic field is A =

(rB/2)eo. For the distribution function f(Hf) = Z-1 e-"ft with the Hamilto-
nian (18), the density n is constant for the radius r < a. Then, the potential is
0 = -(qn/4co)r 2 [2]. To satisfy (18), we demand -(m/2)(rw) 2 -qrwAoe+qO =

0 [see(17)], which reads as the familiar equilibrium condition

U)w2+w w+ 20 = O, (19)
0,2 P

where w= qB/m and -- nq2 /mEo.

(2) Electromagnetic equilibrium
Next, we discuss magnetic confinement solutions. Let us consider a slab

plasma with B = B 2 (x)e,. We assume that the system is homogeneous with
respect to y (&/Oy = 0), so that the canonical momentum p. = my' + qA,(x)

is conserved. We consider Hl = H - cp, and the equilibrium distribution

f(,(I) = Z-'e-z", which gives the drift Maxwellian with a constant velocity
U = ce.. Here, (10) reads

fI = mf,2 - C2 - qcAy + q¢ = fl.
2 2

We note that this ft depends on x. From the distribution function f(kt),
we can calculate the density of each species. For appropriate parameters,
the charge-neutrality can be achieved, and hence, 0 can be set zero self-
consistently. The drift Maxwellian yields a finite current. The magnetic field
produced by this current must be consistent to the vector potential A5 (x)e,

in h. Setting B, = Botanh(x/e), we can find a self-consistent solution that is
called the Harris sheet [3]. The magnetic pressure B' has a dip around x = 0,
where the pressure is confined. This equilibrium is based on the conservation
of the momentum py. Similar calculations in cylindrical coordinates lead to
the Bennet pinch equilibrium.
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C Equilibrium with adiabatic constants and
Beltrami-Bernoulli conditions

As the analysis in the previous section shows, a shear flow is not obtained
from the model of momentum conservation. Here we examine an adiabatic
invariant model to find an equilibrium with a shear flow. Let us first consider
a certain velocity field U and define a moving coordinate by (8). Here we
assume that U depends only on x, and

U. VX = 0. (20)

The transform of coordinates does not bring about temporal variation in any
field. The equation of motion associated with the Hamiltonian H of (10) reads

d - H a - I f-qAj) (21)

dt xj- z 5 H (Z( j -AU q€, (22)

da - aU

or, in the form of Newton's equation (with (9A/Ot = 0) ,

m )= _ý ,X (t X A)] + M U2. (23)
dt 2

In (23), the Lorentz force includes the Coriolis force. We define a generalized
magnetic field by f l x A. We assume that f? is a smooth and strong
field.

Here we introduce an essential assumption

h = aU, (24)

where a is a certain constant. We denote I and 11, respectively, the perpen-
dicular and parallel directions with respect, to f. For "magnetized particles",
the generalized magnetic moment / i j/jIt is an adiabatic invariant. By
(20) and (24), we have V 11 = 0 for every scalar field, and hence, the potential
force in (23) does not have a parallel component. Therefore, fill is a constant
of motion, and gyration average of the kinetic energy m032/2 does not change.
Conservation of both 02 and ý11 yields the constancy of 'M,, which, together
with i =constant, imply that Iff1 is constant (in gyration average) through the
motion of particles. By (24), 1U1 is also constant in gyration average. Com-
bining these adiabatic invariants, we observe that U •/b = (v2 -0 2 - [J2) /2
is an adiabatic invariant.

Using this adiabatic constant, we define

iI = H - mU . ib = H - U . (p - p), (25)
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where rn mU + qA. We may rewrite (25) as

"/2_ + "2U2+ q2= ' _
2 2 2

where o = mU2/2 + q0 is the effective potential. The equilibrium define by
H reads

f(-) = Z-e-l = Z-e-(m-vl 2 /2+•), (26)

which is a drift Maxwellian with a shear flow velocity U. We note that
(24) is the determining equation for U, which corresponds to the "Beltrami
condition" of vortex dynamics systems [4].

The effective potential p determines the density;

n Ifdv =noe- (no = Z-1 J e-om 2
/2 dv).

The pressure p nkT (kT - 1//3) satisfies the Bernoulli-like condition

Vp + nVo = Vp + nV(mU2 /2 + q4) = 0. (27)

We note that the Beltrami and Bernoulli conditions recover the fluid mechan-
ical equilibrium model of diamagnetic (high-beta) structures [4,5].

III TOROIDAL EQUILIBRIUM OF
NON-NEUTRAL PLASMAS

A Constant-density equilibrium in a straight annular
geometry with sheared magnetic field

In this section, we discuss a more specific subject aiming at development of
a new-type of non-neutral plasma trap. We consider a toroidal internal ring
system that can produce a magnetic shear configuration [6]. To understand the
basic property of such a configuration, we start with the analysis of an annular
electron plasma column (a < r < b) confined by both longitudinal (B,) and
poloidal (Bo = B2 a/r) magnetic fields (B, and Bp are constants). The core
region of r < a is occupied by a conductor that carries a longitudinal current to.
produce the poloidal magnetic field. The combination of B, and B9 produces a
magnetic shear configuration with spiral field lines. The vector potential of the
magnetic field is A = ' (0, (B,/2)r, -B2 a log r). The scalar potential 0 is given
by the Poisson equation (15). Here, we seek for a solution with a constant
density. Let us consider a rigid motion of the plasma; U = t(0,wr, U,),
where w is the constant angular frequency of the poloidal rotation and U, is
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FIGURE 1. Toroidal t hernal equilibrium of non-riejt ral plasma.

the constant longitudinal velocity. To obtain a constant-density equilibrium,
we demand -_mU 2 

- qU . A + qO = 0 [see (10)], which reads

-rn (2 qB q2no ) 7`2  _ l + -Uz2 0.
WJ + q O+ 2 +o q(B1aU. + c1, ogr + qC2 - _

The coefficients of r 2 terms yield the conventional equilibrium condition (19),
where the wL is determined by the longitudinal magnetic field (W, = qBl3rn).
The coefficients of log r terms yields cl = -BpaU 2 .

For this equilibrium, the longitudinal magnetic field B, plays the principal
role to confine the plasma, as in the previous cylindrical equilibrium. The
poloidal magnetic field BO and the longitudinal flow U, produces an electric
field on the plasma, while it does not work to confine the plasma. Indeed,
Bp and U, determines the coefficient c1 of the electric field, but they are not
related to the density no. However, the poloidal magnetic field, producing a
magnetic shear, has an important function to stabilize the diocotron (Kelvin-
Hlelmholtz) instability [7].

B Generalized thermal equilibrium in a toroidal
geometry with magnetic shear

In a toroidal system, the toroidal symmetry gives the constancy of the
toroidal canonical angular momentum. We denote the cylindrical coordinate
by (r, 9, z). The toroidal angle J parallels the longitudinal direction z in
the previous subsection. The poloidal angle is no longer an ignorable coordi-
nate, and hence, we cannot assume the conservation of the poloidal angular
momentum (which played the essential role to produce the constant density
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FIGURE 2. Toroidal equilibrium of non-neutral plasma base on the drift model.

equilibria in Secs. 1IB and IIIA). Here we consider a more general (non-
constant density) solution of the nonlinear Poisson equation (15)-(16) with
setting U = rQeg (Q is the angular frequency of the toroidal rotation). Writ-
ing the magnetic field as B = V1b x Vd+BrVi9, the transformed Hamiltonian
is

2
H = H -Qpg= -v -- (rQ -qV+ O

2 2

We normalize the variables as X/AD = f7, and /3qO = 4, where AD is the Debye
length. The nonlinear Poisson equation now reads

-t2ý = exp{-- + /3[m(rQt) 2 /2 + qQ4']). (28)

When Q = 0, (28) is just the Debye shielding equation. The plasma flow
(rotation) has the effect of charge neutralization. To confine a high-density
plasma with low temperature (AD < f), Q and magnetic field must be carefully
chosen, because e-ý becomes a very small number, and the density tends
to localize near the boundary, producing a sheath. In Fig. 1, we show an
example of thermal equilibrium with Te = 10eV and no = 10"m-3 . When
we diminish the temperature, equilibrium density becomes strongly localized
near the boundaries.

Another model of non-neutral plasma equilibrium considers a drift motion
of magnetized particle. For a low density magnetized non-neutral plasma
(wo/w >» 1), we can use the E x B approximation of the flow velocity [8];
u = -V47 x BIB'. The macroscopic continuity equation in a steady state
reads V . (nu) - [V x× V(n/B 2 )] B = 0. When the magnetic field has a
component perpendicular to VO, this relation demands n = B2 F(O), where F
is a certain smooth function. Using this n in the Poisson equation (15), we can
find equilibrium solution. In comparison with (16), this model can produce a
larger variety of solutions. Figure 2 shows typical equilibrium solutions with
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different aspect ratios [9]. Because the drift velocity decreases as B increases,
the equilibrium density shifts towards a higher field region (paramagnetism).
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