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Charge Sign Effect on the Coulomb Logarithm
for a Two-Component (e.g., Antihydrogen)
Plasma in a Penning Trap

J. R. Correa, Yongbin Chang, and C. A. Ordonez!

Department of Physics, University of North Texas, Denton, Texas 76203

Abstract. The magnitude of the center-of-mass scattering angle for a collision between two
charges of the same sign is the same as the magnitude of the center-of-mass scattering angle
for a collision between opposite single charges, everything else being equal. However, this
equivalence only applies for a Coulomb interaction of infinite range. If the range of interaction
between two charged particles is limited, as in a plasma, the center-of-mass scattering angle
acquires a dependence on whether the two particles have the same or opposite charge signs.
In the work presented, the effect that the two different charge sign combinations can have on
the Coutomb logarithm is assessed by considering a cutoff Coulomb interaction potential. A
substantial effect is predicted for neutral or partially neutralized plasmas in Penning traps.

INTRODUCTION

The Coulomb logarithm is a ubiquitous parameter in plasma physics. However, the
commonly used expression for the Coulomb logarithm

A=InA (1)

is not accurate for small values of A where, for a representative binary collision, A =
2bimar Ec/(kgig2) [1]. Here by, is the maximum impact parameter, E is the center-
of-mass energy, ¢,g: is the product of the charges, and & is the Coulomb constant [A =
1/(4meo) in ST units or £ = 1 in Gaussian units]. One reason Eq. (1) is not accurate for
small values of A is that it is an approximation of a more general expression (see below).
Another reason is that Eq. (1) considers collisions between two charged point particles
using a pure Coulomb interaction potential. The actual range of interaction between
two plasma particles is limited. As a result, the Coulomb logarithm should acquire a
dependence on the sign of ¢;4,. Here, a new expression for the Coulomb logarithm is
derived by considering a cutoff Coulomb interaction potential that may be either attractive
or repulsive. The present work extends the results presented in Ref. [ 1] to include the case
of an attractive interaction potential. The new expression may be useful for describing
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kinetic processes in two-component plasmas in nested Penning traps [2,3]. It should
be noted that experiments aimed at merging positron and antiproton plasmas in nested
Penning traps {4,5] may be able to observe the effect predicted by the theory presented
here (or possibly be adversely affected by the effect). Also, the charge sign effect may
affect a plasma’s stopping power [6]

At this point, it is useful to define various scale lengths and use them to introduce criteria
under which the present theory is intended to apply. First, consider two charged particles
that experience a pure Coulomb collision. Initially, the charged particles are an infinite
distance apart and moving towards each other. The closest possible approach between the
particles occurs if they experience a head-on collision. The classical distance of closest
approach for a head-on collision is 7¢(0) = kq,q2/ E., which applies for particles having
the same charge sign. If the two particles are oppositely signed and are considered point
particles, then r4(0) = 0.

Now consider a one component plasma (OCP) [7] of infinite dimensions. The parti-
cles of the OCP are assumed to have a Maxwellian velocity distribution with uniform
temperature 7' and density n. If a collision between two particles in the OCP is ap-
proximated as being a pure Coulomb collision, the average minimum distance of closest
approach is approximately rq9 = kq?/T, where q is the charge of each particle and T
is temperature in energy units. Another scale length associated with the OCP is the
Wigner-Seitz radius, r, = [3/(4mn)]"/3, which is approximately the average distance
between nearest neighbor particles of the OCP. A third scale length is the Debye length

Ap = [T/(4mkq®*n)]V/? = {/r3/(3ry). The Debye length is the scale length over which
the electric field of a charged plasma particle is not canceled (or “shielded”) by an opposite
electric field produced by the surrounding plasma. (When more than one plasma compo-
nent is present, all plasma components associated with thermal speeds of the order of or
larger than the speed of a particle being shielded contribute to that shielding.) A fourth
scale length is the cyclotron radius. Assuming a uniform magnetic field of magnitude B
and neglecting the effects of all other particles and fields, the average cyclotron radius
of a particle in the OCP is approximately 7. = v/mT/({|q|B). Here, m is the mass of
a single particle and £ is a constant associated with the units used (£ = 1 in SI units and
¢ = 1/c in Gaussian units with ¢ as the speed of light).

The coupling parameter for the OCP is defined as ' = kq?/(r,T) [7]. The
coupling parameter can also be written in terms of the scale lengths defined above:
I' = roo/ra = (1/3)(ra/Ap)? = (1/3)/3(roo/Ap)*®. The OCP is strongly coupled or
strongly correlated if I' >> 1 and weakly coupled or weakly correlated if I' <« 1 [7].
For I' > 2, the particle positions start to become correlated, and the plasma can exhibit
liquid or crystal characteristics [7]. Finally, the OCP is strongly magnetized if 7, < rgo
or weakly magnetized if 7, > 7o [8]. Below, we find that the transition between strong
and weak magnetization occurs at 1, = 0.17g.

In Ref. [8], theoretical expressions for the anisotropic temperature relaxation rate are
evaluated for both weakly and strongly magnetized nonneutral electron plasmas. The
expressions are the same, except that for a strongly magnetized plasma the usual Coulomb
logarithm is replaced by a different term. For weakly magnetized plasmas, the physics
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associated with the collision dynamics is contained within the Coulomb logarithm. For
strongly magnetized plasmas, the collision dynamics is modified by the magnetic ficld. In
consideration of these things, we hypothesize that rates or time scales that are associated
with velocity space scattering processes are describable by expressions that apply to both
weakly and strongly magnetized plasmas, except for a term (the Coulomb logarithm) that
changes (see also Ref. [2]). For strongly magnetized plasmas, we refer to the term as the
Coulomb logarithm although it may not have a logarithmic dependence.

In the work presented here, two interacting plasma components are considered. The
cyclotron radius for at least one of the plasma components is assumed to be smaller than
the Debye shielding length associated with the presence of both plasma components.
Also, each plasma component is weakly correlated and may be either weakly or strongly
magnetized.

DERIVATION OF THE COULOMB LOGARITHM

The usual defining expression for the Coulomb logarithm is given by [1]
1 o=, (0,
A== sin? (—') bdb, (2)
Py Jo 2

where 8, is the center-of-mass scattering angle for a collision between two plasma particles
and p; = kqiq2/(2E,). If we consider the classical center-of-mass scattering angle for a
binary collision, then

% dr V(i) v 2
f,=m—2 / —(1- -=] :
4 T ) - 7‘2 ( E{: ,,.2 ('j)
where V/(7) is the interaction potential and
V('I'U) 1)2
=] — - —
0 B (4)

identifies the point where 7 equals zero, denoting a turning point (about which the trajec-
tory is symmetric in the center-of-mass frame of reference). Thus, 74(b) is the classical
distance of closest approach for a given impact parameter b. For a pure Coulomb collision,
V(r) = kqq2/r and

ja3

2 (0 1
in? )= ————
sin (2) NIk (5)

Substituting Eq. (5) into Eq. (2), and introducing a maximum impact parameter b,
yields

1

A b”l(lf b
a ;{/u 1+ 02/pt

b2 ,
db = 1n ( 1+ h—"ﬂ) =In (\/1 + A”) . (6)
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Equation (6) applies regardless of the sign of A = 2b,,,, E./(kq1¢2) and is symmetric for
negative A with respect to positive A. Note that Eq. (1) is arrived at by taking the limit
A > 1 and considering only positive values for ¢;¢s,.

The Coulomb logarithm is now evaluated using a cutoff Coulomb interaction potential,
everything else being the same. The cutoff Coulomb interaction potential has the form

(1

1 1 r
Vir)= kfh(h(; - a)@(l - a), (7
where @ is the Heavyside step function and a is the cutoff length, If we introduce the
variables y = b/7, A, = 2aE,/(kq1q2), and 8 = b/a, the center-of-mass scattering angle
is given by

B dy Yo dy
o.=m—2f ~2f : (8)
o VI=9® s\ [142/A,—2y/Nf — o
where g is found by solving
2 2
0=1“m(yo—ﬂ)—yo~ (9)

Notice that A, carries the information of the charge signs. Equation (9), for positive A,,
yields only one physically admissible solution for yo {1]. On the other hand, if A, is
allowed to be either negative or positive, multiple possible solutions are obtained. How-
ever, the ambiguity vanishes during the calculation of the center-of-mass scattering angle.
Upon integration, the Coulomb logarithm for a cutoff Coulomb interaction potential is
found to be

(1+A)Mn[(1+ A, A,

Alha) = 22+A.)2 2244, (10)

which applies for both attractive and repulsive interaction potentials.

EFFECT OF THE CHARGE SIGNS

Equation (10) is not symmetric for negative A, with respect to positive A,. This is
shown in Fig. | where A, = A is used. Unlike the case of the pure Coulomb interaction
potential, the Coulomb logarithm for a cutoff Coulomb interaction potential depends on
the sign of ¢,¢.

A comparison between the present theory and numerical calculations [8] of the
Coulomb logarithm for repulsive interactions within an OCP is presented in Fig. 2, where
A, = tc, A is used with a proportionality constant, ¢,. (The reader is referred to Ref. [2]
for more details on the type of comparison shown in Fig. 2.) Using A, = +c,A amounts
to setting @ = Cobmayr, Where by, is set equal to the cyclotron radius. ¢, = 2 is chosen
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FIGURE 1. Equation (10) using A, = £A.

because it yields the best fit (by eye) between Eq. (10) with A, > 0 and the numerical
calculations. (Thus, a = 2r..) Equation (10) with A, > () is found to be within 10% of
the numerical calculations for A > 0.3 (A > 0.06). The transition from disagreement
to good agreement between Eq. (10) with A, > 0 and the numerical calculations may
be considered to indicate that the transition from strong to weak magnetization occurs
near A = 0.3 within an OCP. For the comparison using A, = —c¢,A, the prediction for
an attractive interaction potential is compared with numerical calculations for a repulsive
interaction potential. The result indicates that the charge sign effect is substantial over at
least an order of magnitude of A values and should be observable in neutral or partially
neutralized plasmas in Penning traps.

CONCLUSION

By considering a cutoff Coulomb interaction potential, a new expression for the
Coulomb logarithm, Eq. (10), has been derived. The new expression for the Coulomb
logarithm exhibits a dependence on whether the interaction potential is repulsive or at-
tractive. For repulsive interactions, Eq. (10) was found to agree with numerical results for
an OCP that is weakly magnetized (i.e., an OCP for which r./rqo > 0.1). For attractive
interactions, the applicability of Eq. (10) is not expected to be restricted by the ratio r,./rag
associated with each of two oppositely signed plasma components because the classical
distance of closest approach can always be less than the smaller of the two cyclotron radii
associated with the two components.
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FIGURE 2. The percent difference between Eq. (10) using A, = £2A and numerical calculations. The
points are joined by lines to guide the eye.
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