UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO12554

TTTLE: Non-Collisional Kinetic Model for Non-Neutral Plasmas in a
Eenning Trap: General Properties and Stationary Solutions

ISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TTTLE: Non-Neutral Plasma Physics 4. Workshop on Non-Neutral Plasmas
[2001] Held in San Diego, California on 30 July-2 August 2001

To order the complete compilation report, use: ADA404831

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012489 thru ADP012577

UNCLASSIFIED




Non-Collisional Kinetic Model for Non-Neutral
Plasmas in a Penning Trap: General Properties
and Stationary Solutions

Gianni G.M. Coppa, Paolo Ricci

Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Energetica,
Politecnico di Torino, Corso Duca degli Abruzzi 24 — 10129 Torino, Italy.
E-mail: ggmecoppa@polito.it, riccipaolo@libero.it

Abstract. A non-collisional kinetic model for a non-neutral plasma in a Penning trap is
presented. This model describes the evolution of the z-integrated distribution function of the
particles, taking into account the three-dimensionality of the problem. The general properties of
the model, in particular the conservation laws, are studied. The model is also related to the fluid
model proposed by Finn et al. and refined by Coppa et al. Finally, numerical investigations are
presented concerning the equilibrium solutions of the model.

INTRODUCTION

Usually, the dynamics of non-neutral plasmas confined in Penning-Malmberg traps
is described by employing a two-dimensional drift-Poisson model, where charged
particles are regarded as straight lines (strings) of uniform density, due to the very
high value of the axial bouncing frequency. According to this model, the particles
exhibit an ExB drift motion and the electric field is computed self-consistently from
the charge density by using the Poisson equation.

This model predicts possible instabilities for the azimuthal modes mg >1. For the
mp=1 mode, discrete modes are always stable for any density profiles [1], while the
continuum spectrum can only produce an algebraic growth [2]. Nevertheless,
experiments show that the mode growth is actually exponential: the contradiction
between experimental results and the linear two-dimensional theory is a challenging
problem in the theory of non-neutral plasmas.

The present work grounds on recent studies on the evolution of non-neutral plasmas
in a Penning-Malmberg trap, pointing out the important role of kinetic effects and of
the finite length of the device, in particular for the mg=1 diocotron instability [3-5]. In
fact, when a particle approaches the border of the plasma, it feels a confining potential
which, in general, depends upon both the radial and the axial coordinates. The radial
component of the confining electric field causes an ExB drift in the azimuthal
direction, affecting the rotation frequency. The drift depends upon the axial energy of
the particles, which affects the penetration in the confining potential [6].

The aim of the present work is to develop a kinetic theory for non-neutral plasmas
taking into account self-consistently all these effects. The kinetic model assumes that
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the frequency are ordered as Q. >> Q) >> Q, being Q. the cyclotron frequency, €,
the bouncing frequency and Qg the ExB drift rotation, which is comparable to the
frequency of the modes of interest. Within this assumption, the planar motion of the
electrons is well described by the dynamics of their guiding centers, given by the ExB
drift velocity, and the complete kinetic description of the plasma is then provided by
the distribution function f'(r,6, z, & 1), where ¢ is the axial energy of the particles. The
description is completed by the self-consistent Poisson equation for the electrostatic
potential ¢(#,0, z, t).

In order to reduce the complexity of the problem, the dimensionality of the model
is reduced by integrating along the axial direction. If the electrostatic potential “seen”
by a string of electrons varies slowly in time, the ergodic distribution in the phase-
space (z, v;) can be assumed for the particles of the same energy and a kinetic equation
for the z-integrated electron distribution, F(r, 6, & ), can be deduced. The properties
of such kinetic equation are the main subject of the present work.

DEDUCTION OF THE KINETIC EQUATION

The starting point in deducting the present model is the kinctic equation for the
complete distribution function, f(r,6, z, &, 1),

8 e.xVig 1.9 . 0(ds )
a:+vl[ B, f]+e&6’f)+a§(drf]”0 M

where the ExB drift approximation is used and the phase-space variable £ is the axial
energy of the particles

§=%mﬁ—eﬂaaao (2)

while the time derivative of £is simply given by d&/ dt = — ed¢/ ot.

The z-integrated distribution F(r,6,&¢) is introduced by factorizing the distribution
function as

S(r,0,8,2,0) = F(r,0,6,0)8(r,0,¢,2,1) 3

The function g is defined assuming the particles of a given energy & to be
distributed, in the phase-space (z, v.), according to the ergodic distribution. Moreover,
g is normalized in order that f g(r,8,& z, t) dz =1. This leads to

[e¢(r,9,z,t)—§]~”2

g(",ﬁ,«f,z,t) =
_“[e¢(",9,2,t)—§]4/2(12
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Within this assumption, the following equation for the function F(»,6, &, 1)

oF 8
—at—+Vl(vDF)+~a?(v§F)— 0 (5)

is obtained by integrating Eq. (1) along the axial direction and defining the bounce-
averaged streaming velocities as

e, xV,¢ o4
v, = | +t—=1gdz v, =—e| —gdz 6
P j B, * f f P (©)
The kinetic model is then completed by the sclf-consistent Poisson equation in the
Penning trap

Vig= f [ F(r,0.6,080,0.2,¢,0)d¢ )

Finally, it must be observed that the kinetic equation, obtained using the adiabatic
invariant

I(&) = -2—1; [ 2m(E + ez | (8)

as phase-space variable instead of £ is simpler, in principle; however, the inversion of
Eq. (8), required in the solution of the Poisson equation, is a challenging numerical
problem.

GENERAL PROPERTIES

The distribution function F can be related to physical quantities that can be
measured experimentally. Denoting with o(r,6, ) the z-integrated plasma density (an
experimentally-measurable quantity) and with F(r,6, ¢, £) the normalized distribution
of the kinetic energy of the particles, ¢, the distribution function F' can be expressed as
F(r,0,&0) =0(r,0, OF (1,6, ¢, 1), with {'= & + eg,, being ¢, the potential in the point
where the kinetic energy of the particles is measured and | F, (6, 7.6, 0)dd=1.

The kinetic model presented here satisfies some conservation laws. The canonical
angular momentum, L ,, defined as

L, =—52§ | [ [r2F(r.6,¢,0drdods )

and the angular momentum, /,, proportional to the axial angular momentum of an
incompressible fluid,
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I, = [e.-rx(ExB)dr (10)

are both conserved.
As far as the energy is concerned, the total energy of the plasma, E,,;, can be written
as the sum of potential and kinetic energies, E = E o+ E ki, being

i
Ep == [ [ epr(r,0.6,080-,0,2,&,0dvag "
E, = -;— [ [mv2(r.6,6,08(r,0,2,&,0dras

The calculation of dE,, / dt leads to the conclusion that the model conserves the
total energy, as the variation of the energy of the plasma equals the power provided by
the electrodes:

(IE Wt - fg__(_{_

PR A (12)

CONNECTION WITH A RECENTLY-PROPOSED FLUID
MODEL

The present kinetic model can be related to the fluid model proposed by Finn ef al.
[5] and refined by Coppa et «l. {4]. The main assumption of that model is that the
Maxwell-Boltzmann distribution is reached along the axial direction, so that the
particle density n(r,6, z, t) can be expressed as

(13)

n(r,8,2,1) = N(",G,t)exp[w}
k,T

where N(r,0, 1) is a function that does not depend upon z. Within this assumption, the
continuity equation for the z-integrated density, o{r,6, 1), is written as

P
—a%wl(vla):o (14)

where

v V.sexplleg)(k, )z

A ) (15)
B, [ explleg)s(k, )k
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The fluid model can be deduced from the present kinetic model by integrating Eq
(5) with respect to £ assuming that the function F(r,8,£,r) can be written as:

F(r,0,&,1) = F(r,e,z)exp[ﬁ LT

dz
ky JI\/6¢+€E (1o

This assumption is equivalent to affirm that the electrons are distributed according
to the canonical distribution; i.e.

&H-)exp(-&/(ksT)).

the electron density is proportional to

NUMERICAL RESULTS

The electrostatic potentials, ¢(r,z), corresponding to axially-symmetric
distributions, F(r,&), have been calculated by solving numerically the self-consistent
Poisson equation [Eq. (7)]. The equation has been discretized in space (using a
uniform grid) and energy. Then, suitable quadrature formulas have been used to
evaluate the £ and z-integrals. The Poisson equation has been solved by adding a term

O@or to the left hand-side and seeking the steady state solution of the diffusion-like
equation so obtained.
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FIGURE 1. Plasma density difference, with respect to the Maxwellian distribution, for the Maxwellian
distribution truncated at the energy I=kp7/2 (dotted), /=kT (dashed) and I=2kpT (solid). The confining
potential of the trap is V=-50 V, the central electrode length L,=26 cm, the end electrodes length L~4
cm, the wall radius R,,=3.5 cm, the plasma temperature 7=1000 K, the magnetic field By=1 T and, the
parameters of the density profiles introduced by Finn [5] are: #,=5-10" m™, 4=5, r=2 cm.
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FIGURE 2. Bounce-averaged drift frequency for electrons with Maxwellian distribution at different
axial energy: £=20.5 eV (solid), £=23.3 eV (dotted) and & =26 eV (dashed) for two different valucs of
L. The predictions of the 2-D theory are shown in thick solid line. The other trap parameters are the
same as Fig.1.

The equilibrium solutions have been studied having fixed the plasma density at the
center of the trap as the density profiles introduced by Finn ef al. [5]. The velocity
distributions have been chosen to be truncated Maxwellians, as suggested by
Hilsabeck et al. [3].

Some numerical results are presented on Figs. 1-2. Figure 1 points out the effect of
the velocity distribution on the plasma density by comparing different truncated
Maxwellians. Figure 2 shows how the rotation drift frequency depends on the particle
energy.
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