UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO12553
TTTLE: Image Charge Forces Inside Conducting Boundaries
[DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TTTLE: Non-Neutral Plasma Physics 4. Workshop on Non-Neutral Plasmas
[2001] Held in San Diego, California on 30 July-2 August 2001

To order the complete compilation report, use: ADA404831

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012489 thru ADP012577

UNCLASSIFIED




Image Charge Forces Inside Conducting
Boundaries

Mark D. Tinkle* and S. E. Barlow'

* Dynamics Technology, Inc., 21311 Hawthorne Blvd., Suite 300 Torrance, CA 90508-5610
tW.R. Wiley Environmental Molecular Sciences Lab, Pacific Northwest National
Laboratory P.O. Box 999 (K8-88) Richland, WA 99352

Abstract. Evaluation of the force on a charge particle due to the surface charge distri-
butions it induces in nearby conductors is generally a challenging problem. We show these
forces can be evaluated explicitly and fairly simply in a number of elementary, but important
cases.

INTRODUCTION

The force on a charged particle due to the charges it induces on nearby conducting
surfaces is a factor in many scientific measurements. The effects of these forces are
particularly important for non-neutral plasmas. Until now, general techniques for
quantifying image charge forces have not been available. An important advance
was made in a recent paper by Fine and Driscoll {1} which addressed the lowest
order solutions to this problem for infinite cylindrical geometry including finite
charge length effects. Here, we generalize those results considerably.

IMAGE CHARGE PSEUDOPOTENTIAL -

The measurable physical variable associated with induced surface charge is the
force it produces on the point charge. We would like to express this force as the
gradient of a function of the point charge’s position. There is a subtlety involved
in this potential function that is best illustrated by a simple example using the
method of images.

Motivating example

If a point charge of strength ¢ is at a position (z,y,z) = (20,0,0), (zo > 0) with a
grounded conductor in the y-z plane, we know from the method of images[2] that
the electrostatic potential for z > 0 can be expressed as the sum of the potentials
from the point charge and a fictitious image charge of strength —q located at

(z,y,2) = (—20,0,0):
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#(z,y,2) = d ( . - ! ) 1
z,Y,%) 4nmeq \/[(I_xo)z + y2 + 22)] \/[Yx+x0)2+y2+22)] (1)

for £ > 0. This is the potential that determines the force on an infinitesimal point
charge, which is to say a point charge whose own induced surface charges produce
negligible forces. Can we use it to find the force on the charge g7 We must first
drop the potential produced by the charge, since it cannot exert a force on itself.
This leaves the potential of the image charge, which evaluated along the x axis is
just |

= (2)

Teg T+ 20

for > 0. Two courses of action present themselves for finding the z-component of
the force: take ®;/0z and evaluate at = = z¢, or evaluate ®; at x = z¢ and take
0/0xq of the result. The results differ by a factor of two:

®4(2,0,0) =

6@1 q 1 :
oz = dreo 4zl (3)
=70 0 4To
and
Jdzo 4meg 223’
The force can be found directly from Coulomb’s Law using the image charge([2]:
2
B
F= — 5
dmeq 4l )

so at least in this case, we have a choice of formulae for the force in terms of the
potential:

Fzo) = - 15 . & (6)
or o1®
F(ay) = 222—-—[ 5lo=°)T (7)

The first choice seems like the natural one, but it requires us to keep a function
of two position coordinates {z and ). The second choice contains an unfamiliar
factor of 1/2, but the force is reconstructed from a simple function of one position
coordinate (o). This is the useful form, which we will now derive more generally.

General derivation

Next we find a general expression for the force on a point charge ¢ in the presence
of both fixed charges and conductors at fixed potentials.

. 1
F=—gV¢p— 5(1V<I>, (8)




where ¢ is the ordinary electrostatic potential due to the fixed charges and poten-
tials, and ® is the potential due to charges induced by the point charge, evaluated
at the point charge coordinate.

From the definition of the electrostatic potential ¢, the work required to bring a
point charge ¢ in to position ¥ from infinity (where ¢ = 0) while holding the charges
producing ¢ fixed in place is W = ¢¢(&). The force on the particle is the negative
of the gradient with respect to its position coordinate of the total system energy
under the circumstances considered. If the charges producing ¢() are indeed fixed
and there are no other energy terms involving the position of the point charge,
then the force is F' = —qV . This is the familiar result for an infinitesimal test
charge, but it is a special case. It is not the definition of ¢.

When a charge moves toward a conducting surface, the induced surface charges
must bunch together, against their mutual repulsion, to maintain an equipotential.
This adds a term to the total electrostatic energy of the system that acts to reduce
the attractive force felt by the point charge, by exactly a factor of two. This is
easily derived from the well-known expression for the total electrostatic energy
(excluding self-energy) of n discrete charges:

1
W= 52%“1’:‘, (9)

where ®; is the potential at charge ¢; due to all the other charges.[3] If j = 1 denotes
the point charge, and the others are the charges induced on a grounded conductor,
then ®; is zero for all j # 1 (the induced charges) regardless of the position of the
point charge, and the total electrostatic energy is

W= sa0, (10)

where ® = @, is the potential at the point charge due to theinduced surface charges.
The force on the point charge is thus

L]
F=-3qve, (11)

where the gradient is taken with respect to the position of the point charge. If the
conductor is at some potential other than ground, then we must add the familiar
term —gV ¢ to this thereby recovering eq.(8).

We refer to ®(#) as the image charge pseudopotential, to emphasize its dif-
ferences from ordinary potentials. Unlike ¢(&), ®(Z) is not simply a solution of
Laplace’s or Poisson’s equation, because its source term (the induced charge distri-
bution) is a complicated functional of Z, the point charge location. Further, ®(%)
is only meaningful at the particular location of the charge. As we describe below,
®(Z) is proportional to the nonsingular part of G(&,#'), evaluated at & = Z’. Thus,
®(F) may be extracted from a family of solutions to Laplace’s equation, but is not
itself a solution. Numerous methods, include the classic “Method of Images” for
solving these problems are discussed in Tinkle and Barlow.[4]
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RESULTS

Generic limiting form

As a smooth region of a conductor is approached closely, the pseudopotential ap-
proaches that of an infinite flat plate. From the method of images, ® —» —g/4me 2d
as d — 0, where d is the distance to the surface. Thus if & is the distance to a
conductor along the £ axis of a rectilinear coordinate system and the surface is
perpendicular to the £ axis where they intersect,

q 1 .
7 T Ircoto 2(1—£) (12)

as £ = £/& — 1. If the geometry is symmetric in £, we can account for the limiting
behaviors at both walls with the form

q 1 .
__) —_— ————, 1'3
471'6()&) 1-— §2 ( )

as |€] = 1. The complete solution for ® along the & axis will be the sum of this
divergent term and a finite term. Expressed as a power series expansion about the
origin, it will have the form

o=-—L_3S°ce, (14)

4’”6050 n=0

with C, =0 for odd n, due to symmetry. The divergent term by itsell has C, =1
for all even n. The results we obtain for specific geometries can all be expressed in
this form, with different values for the coefficients. Tinkle and Barlow([1] present
solutions of this form for a number of important cases including the spheical shell,
parallel plates and the rectangular box.

Cylindrical Shell

By way of example, we show here the results for a cylindrical box. The calcula-
tions are rather complex,[4] however, solutions of the form

8(5,3) = ~—— 3 3 Cpunl@)p™ 52, (15)

47TCUZU m=0n=0

can be found. Here « is the ratio of the cylinder’s length to diameter-the “aspect
ratio.” The limiting values listed in Table 1 are in line with our generic discussion
above. These coeflicient terms are shown plotted in Figure 1.
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FIGURE 1. Plots of the the first six terms of the power series expansion of the image charge
pseudopotential for a cylindrical box as functions of the aspect ratio. (A) The pure “axial” terms-
powers of z only. (B) The pure “radial” terms—powers of r only. (C) The crossed “radial” and
“axial” terms—powers of r and 2. )
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TABLE 1. Asymptotic limits of image charge coefficients for
cylindrical box, see text for explanation. *agrees with results of
Fine and Driscoll [ref 1, eq(32)]

a—0 a0

Cst 2 parallel 4th Order a=1 long

plate Exp’l. Trap tube
| Co2 | 10518 | 07755 | 05880 | 0 |
| Coa | 10045 | 11669 | 1.1845 | 0 |
| Cos | 1.0005 | 1.0180 | 11246 | 0 |

| Cao | 0 | 07534 | 0.8792 | 1.0027*
| Cao | 0 | 11243 | 1.0884 | 1.0009 |
| Cso | 0 | 1.0572 | 1.0020 | 1.0003 |
| Coa | | 09157 | -1.0309] 0 |
| Caz | |  -03470 | -04359] 0 |
| Coa | | 01822 | 0188 | 0 |
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