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Floquet Theory of the Quantum

Dynamic Kingdon Trap

R. Bliimel

Department of Physics, Wesleyan University, Middletown, CT 06459-0155

Abstract. The dynamic Kingdon trap is an excellent device for the investigation
of chaos and quantum chaos, both theoretically and experimentally. Since it may
be interpreted as an electrodynamical version of a Penning-Malmberg trap, it is also
suited for the study of strongly coupled periodically or aperiodically driven nonneutral
plasmas. Floquet theory provides a natural framework for the quantum mechanics of
the periodically driven dynamic Kingdon trap.

The dynamic Kingdon trap is an electrodynamical trap for the storage of charged
particles [1]. It resembles an electrodynamical version of a Penning-Malmberg trap
[2] and can be used to study nonlinear effects in forced nonneutral plasmas such
as rf heating or phase transitions [1]. It can also be used to study classical and
quantum chaos [3,4] in oscillating fields. Even a single charged particle stored in a
dynamic Kingdon trap may experience a transition to chaos [1,5]. This makes the
dynamic Kingdon trap an ideal system, both experimentally and theoretically, for
studying quantum chaos effects.

In its simplest form the dynamic Kingdon trap consists of a straight wire sur-
rounded by a conducting cylinder [1]. A superposition of an ac and a dc voltage
is applied between the wire and the cylinder such that the dc voltage attracts a
charged particle placed between wire and cylinder into the direction of the wire.
The voltages induce surface charges on the wire of magnitudes 0u' and Odc, re-
spectively. The main strength of the dynamic Kingdon trap is that it is capable
of storing charged particles at zero angular momentum. We will exclusively focus
on this case from now on. In addition we will assume that the particle has zero
momentum parallel to the wire. Introducing the radial coordinate r of the charged
particle and the unit vector f in the radial direction, the force acting on a trapped
charged particle of charge Z is given by

-(f, t) = [odc + Uac cos( t)] ,(1)
27rc 0 r

where Q is the angular frequency of the applied ac voltage. Choosing
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2Zad /2(2)

as the unit of length (m is the mass of the trapped particle), and 2/Q as the unit
of time, we define p = r/1 as the dimensionless radial coordinate and -- = Qt/2
as the dimensionless time. Written in these dimensionless quantities, and defining
the control parameter q = aac/(2Udc), Newton's equation mf = F(f', t) yields the
Kingdon equation [1,6]

72 + [1- 2,qcos(2T)] 1 = 0 (3)d - 2  p

as the classical equation of motion of the charged particle. Phase-space portraits
[3] of (3) reveal the presence of a dominant trapping island surrounded by a chaotic
sea [1].

The force F acting on a charged particle in the dynamic Kingdon trap can be
derived from the potential

V(r, t) = Zd In () [1- 2rcos(tt)] (4)27reoI0

via F = -VV -40V/Or. We use this potential in the time-dependent
Schrfdinger equation for a single particle in the dynamic Kingdon trap:

O)Ft) h
04 = _ h2  t) + V(r, 0 t). (5)

Because of the cylindrical symmetry of the trap and our assumption of zero angular
momentum and zero momentum along the wire we have (F, t) = /3(r, t). Switching
to dimensionless variables and defining V(p, r) = pl/p(p, -) we obtain the one-
dimensional radial Schr6dinger equation

, p~(p, 7) a, [&,V (p,T) 4_0a , ) [ p L + ;T (pr)l + [1 - 2,Qcos(2r)] ln(p),o(p,T), (6)

O7 2 ap0 +4

where we defined the effective dimensionless Planck constant a, given by

hQr(O (7)

Technically (6) is a linear partial differential equation with time-periodic coeffi-
cients. In this case Floquet's theory [7] applies. It states that solutions of (6) exist
which are of the form

0,1 (p, r) = exp(-ipr) 4I,,(p, r), (8)
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where p, in general a complex number, is the Floquet exponent and 4ID,(p, r) is a
7r-periodic function. These solutions of (6) are of prime importance to us, since we
are interested in the long-time behavior of trapped quantum solutions. In this case
it is convenient to study the wave function of the trapped particle at times that
correspond to integer multiples of 7r. Given a starting state I 0) =1 p(p,T = 0)),
the quantum states of the trapped particle at times Tmn = mir are given by

I p ( - )) - I W ) = 0 ' 1 o), m = : 0, 1 , 2 ,. .. , (9 )

where U is the one-cycle propagator, i.e. the time evolution operator of the system
from 7- = 0 to r = 7r. Applying (9) to the Floquet solutions (8) for one cycle
(m = 1) we have immediately

(U I ,(P, T = 0)) =1 q(P, T = 7r)) = exp(-i/nr) I T(P, = 0)). (10)

This equation shows that in addition to their mathematical significance, the Flo-
quet solutions (8) at T = Tm have a very direct physical meaning: they are the
eigenfunctions of the one-cycle propagator UJ. Floquet solutions of time-periodic
quantum systems were studied in detail in the quantum literature. Among the first
were Shirley [8] and Zeldovich [9]. The Floquet exponent p. is also known as the
quasienergy, and the wave functions I,(p, T) are known as the quasienergy wave
functions [9].

Since according to (10) the Floquet states reproduce themselves up to a phase
factor after propagation with U, the Floquet states are non-spreading wave pack-
ets. Therefore, for periodically driven systems such as the dynamic Kingdon trap,
the Floquet states are the closest analogues of the stationary states of a time-
independent quantum system.

Computing the Floquet states of the dynamic Kingdon trap shows that they
come basically in two varieties: (i) narrow states located inside of the trapping
island, and (ii) broad states characterized by a large overlap with the chaotic sea.
For sufficiently small c the states localized within the trapping island resemble
harmonic oscillator states forming a systematic sequence of states characterized by
an increasing number of zeros within the trapping island. This sequence is finite
since at some point these Floquet states become so wide that they "spill out" of
the trapping island and leak out into the chaotic sea. Even the "broad states" of
the chaotic sea may harbor some surprises. It is possible that these states are not
entirely delocalized over the chaotic sea, but show Anderson localization phenomena
[10] akin to similar effects observed in the kicked rotor [11] and the hydrogen atom
in a strong microwave field [12]. Computing the Wigner transforms

f, (p, p) = 1 ,(p + s12) 0* (p - s12) e- iPS/a ds (11)

of the Floquet states localized inside of the trapping island shows that these states
are not only localized inside of the island as far as their space coordinates are
concerned, but are entirely localized inside of the island in phase space.
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Of all of the quantum dynamical traps the dynamic Kingdon trap is perhaps
the most interesting one from a nonlinear dynamics point of view. Loaded with
only a single charged particle the trap shows a mixed phase space that possesses
all of the classic phase-space morphology, including regular islands and a chaotic
sea. Experimentally accessible quantum chaotic systems are rare. Due to its sim-
plicity the dynamic Kingdon trap has a realistic chance of joining the currently
small family of quantum chaos experiments. Among these the dynamic Kingdon
trap is perhaps closest in spirit to the hydrogen atom in a strong microwave field
[12,13]. Both systems are driven by external ac fields, and both systems show a
mixed phase space. While it is known that the hydrogen atom in a strong mi-
crowave field possesses a true ionization continuum with unnormalizable quantum
states, the nature of the quasienergy spectrum of the dynamic Kingdon trap is
not currently known. Because of its simple, but nevertheless representative phase-
space structure, the dynamic Kingdon trap has much to offer for theoretical and
experimental quantum chaos research. Since the dynamic Kingdon trap resembles
an electrodynamical version of a Penning-Malmberg trap [2] and since it is possi-
ble to store many charged particles simultaneously in a dynamic Kingdon trap [1],
the dynamic Kingdon trap is also an excellent device for studying strongly fbrced
nonneutral plasmas.
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