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Two-Dimensional Vortex Dynamics With

Background Vorticity

David A. Schecter

Advanced Study Program

National Center for Atmospheric Research,' P.O. Box 3000, Boulder, CO 80307

Abstract. Magnetized electron plasmas have been used to study the dynamics of
two-dimensional vortices in a cloud of background vorticity. Experiments have shown
that background vorticity can calm chaotic vortex motion, and cool a system of intense
vortices into a crystal equilibrium. Further experiments have shown that weak vortices
tend to migrate to extrema in the background vorticity distribution. The electron

plasma experiments have motivated new theories on two-dimensional vortex dynamics
with background vorticity. The experiments and related theories are summarized.

Energetic, roughly two-dimensional (2D) vortices abound in nature [1]. Examples
are oceanic eddies, tropical cyclones, and the Jovian hurricanes. Remarkably, mag-
netized electron plasmas are excellent systems for studying high Reynolds-number
2D vortex dynamics experimentally [2]. Recent electron plasma experiments have
shed light on how 2D vortices interact with the environmental flow, i.e., with back-
ground vorticity. This article reviews the experiments, and related theories.

ELECTRON PLASMA EXPERIMENTS

Figure 1 is a schematic diagram of the experimental device [2]. A long column of
electrons is confined in a hollow cylindrical conductor. The electrons are trapped
axially by negative dc voltages on two end-cylinders, and radially by a uniform
axial magnetic field Bi. The apparatus is equipped to destructively measure the
z-averaged electron density n(r, 0, t). By raising the voltage of one end-cylinder
(right), the electrons are released onto a phosphor screen. The resulting density
image is recorded with a CCD camera. The evolution of n is observed by a sequence
of experiments, in which the the initial conditions are the same, but the release-
times vary.

Under proper conditions [2], the electron density n is governed approximately by
a set of two-dimensional fluid equations, known as 2D drift-Poisson flow:

1) The National Center for Atmospheric Research is supported by the National Science

Foundation.
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FIGURE 1. Confinement device (Penning-Malinberg trap) and imaging diagnostic, used to
study 2D vortex dynamics with an electron plasma.

a--l+ 16. Vn= , IF= -V C x X, V 29 = 47ren. (1)
at B

Here, V7(r, 0, t) is the E x i drift velocity field, and 0(r, 0, t) is a 2D electrostatic
potential. The boundary condition on the electrostatic potential is q = 0 at the
wall of the confinement cylinder.

Defining the strearnfiniction, V(r, 0, t) =_ co/B, and the vorticity, ((r, 0, t)
. V x J, we may recast 2D drift-Poisson flow as follows:

- + ir.V(=° 0 =Vx, g VV X=V.ý (2)

By amazing coincidence, Eqs. (2) are the 2D Euler equations, which also govern
two-dimensional flows in uniform-density inviscid incompressible fluids.

Comparing (2) to (1), we see that the vorticity ( is proportional to the electron
density n by the relation ( = 47rccB-' n. So, in the electron plasma experiments,
ineasuring electron density is cquivalent to measuring vorticity.

CHAOS TO CRYSTAL

Figure 2(a) shows the evolution of electron (lensity (vorticity) in an experiinent
performed at the University of California, San Diego [3]. Initially, the (density is
distributed in a spiral, resembling a hot tungsten filament that is used to create
the electrons. Subsequently, the density evolves into a system of N clumIps (dark
spots) immersed in a diffuse background l)lasma. Each density clumlp corresponds
to an intense vortex, spinning counter-clockwise, and the diffuse background plasina
corresponds to a low level of background vorticity.

To appreciate the influence of background vorticity oIl the vortex motion, let us
first consider the vortex dynamics without background vorticity. In tile absence
of background vorticity, the vortex dynamics is Hamiltonian. Ignoring minor wall
effects, the Hamiltonian is given by [4]

H 1 - E rirj In [(xi -_ xj)2 + (y _- yj) 2 )], (3)
i<j
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FIGURE 2. Spontaneous formation of a vortex crystal in an initially turbulent electron plasma

[3]. (a) Time evolution of z-averaged electron density (vorticity). Darker shades indicate higher

density. (b) Number of vortices versus time. (c) Selection of vortex crystals obtained from initial

conditions similar to that in (a).

where Fi is the circulation (area integral of vorticity) of the ith vortex, (xi, Yi) is the
position of the ith vortex in a Cartesian coordinate system, and i,j = 1, 2,... N.
The canonically conjugate coordinates are (qi,pi) = (V/T7 xi, VTi yi), and the
dynamics is given by Hamilton's equations: dt = iOp,H, Pi = -Oq,H.

Because the vortex dynamics is Hamiltonian (without background vorticity), it
is generally chaotic. During this chaotic motion, two vortices occasionally become
close enough to merge. Numerical simulations of 2D Hamiltonian vortex dynamics,
punctuated by occasional mergers, show that the number of vortices N, decays as a
power law in time, t-ý, where ý is a positive constant of order unity [5]. Figure 2(b)
compares the expected power-law decay to an electron plasma experiment. The
scatter in the data is due to the destructive imaging technique. Initially, N, exhibits
the expected power-law decay; however, when t -loreins, mergers cease.

The arrest of vortex mergers is due to the formation of a "vortex crystal" equi-
librium [Fig 2(a), 100ms; Fig. 2(c)]. A vortex crystal is an array of intense vortices
that rotates rigidly in a diffuse background. Jin and Dubin proposed that vortex
crystals form due to the ergodic mixing of background vorticity by the intense vor-
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tices [6]. Using a version of Lynden-BeHl statistics [7], they showed that a vortex
crystal equilibrium is the most probable state that can result from such mixing, for a
given energy, angular momentum and total circulation of the flow. These maximum
entropy states are compared to the experiments in Ref. [6]: they accurately predict
the arrangement of vortices, and details of the background vorticity distribution.2

Since the electron plasma exl)eriments, the formation of vortex crystals has been
observed in various numerical sinmlations of 2D Euler flow [8,9].

MOTION TO THE EXTREMA

The spontaneous formation of vortex crystals in 2D turbulence demoinst rates the
importance of background vorticity in spectacular fashion. Of course, other effects
of background vorticity have been recognized for decades. For examI)le, it is well-

known that vortices move toward extrema of the background vorticity distribution.
The details of this process have been studied rigorously in dynamical meteorology
[12], for the main pl)urose of understanding hurricane trajectories.: However, a

new theory was required to exlplain the vortex motion in electron l)lasmas [13].

Unlike terrestrial hurricanes, vortices in electron plasmas are typically exposed
to intense background shear. In this sense, electron vortices are more like Jovian
hurricanes, which are contained in strongly sheared zonal jets [10], or inesovor-

tices within hurricanes [9,11]. Intense background shear creates a disparity in the

rates at which vortices of opposite sign migrate to extrema of background vorticity.
Furthermore, sufficiently large shear will arrest the migration. These results are

discussed below.
Figure 3(a) is a numerical simulation that illustrates vortex motion through ax-

isymmetric background vorticity, similar to what might exist, in an electron plasma.
At t = 0, a clump (black dot) and a hole (white dot) are placed at. the same radius
r,. The clump is a positive vortex, spinning counter-clockwise, whereas the hole is
a negative vortex, spinning clockwise. In time, both vortices redistribute the local
background vorticity. In response, the clump moves radially inward, to the peak of

background vorticity, whereas the hole moves radially outward, toward a minimum
of background vorticity.

The opposite motion of clumps and holes is easily understood. Suppose that
there is only one vortex of circulation F,, and that the vortex is point-like. The

vorticity distribution is a sum of the background contribution (b) and the vortex
contribution (v); i.e., ( = (b + Fv6(F- i(,). It is well-known that the 2D Euler
equations, with rotationally symmetric boundary conditions, conserve the canonical
angular momentum,

2) The final number of vortices and their individual vorticity profiles are not predicted. They are

taken from the observed vortex crystals and fixed in computing the maximum entropy states.
3) The background vorticity affecting hurricane motion includes planetary vorticity, as well as
the vorticity associated with the envirounental wind.
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FIGURE 3. Vortex motion in an axisymmetric background vorticity distribution. (a) Numerical
simulation. T - t x IS[rv(0)]I. (b,c) The redistribution of local background vorticity by a vortex
increases < r2 >b. By conservation of PO, clumps and holes must react oppositely.

Po =- d2*(r2= Fb<r2 >b +Fr•. (4)

Here, Fb > 0 is the total circulation of the background flow, and < r 2 >b is
the (b-weighted spatial average of 1-

2 . As illustrated in Figs. 3(b) and 3(c), the
redistribution of background vorticity by the vortex tends to create a local plateau
in the 0-average of (b. This increases < r2 >b. To conserve Po, a clump (F, > 0)
must decrease r, and move up the background vorticity gradient, whereas a hole
(Fv, < 0) must increase r, and move down the gradient.

Let us now consider the vortex-background interaction in greater detail. The Eu-
ler equation for the evolution of vorticity can be written as two separate equations.
The first equation is for the vortex motion,

dr, =V (r,,t). (5)

Here, Vb is the background velocity field; that is, Vb = -VVb x i, where V2 _b = (b.
Since the background vorticity is initially axisymmetric, i.e., (b(r, t -- 0) = ýr),
the background velocity is initially circular, i.e., Vb(F, t = 0) vb(r)0. The second
equation is for the advection of background vorticity,

a (b + + i V6b = 0,)
at

where iV, = x F,(27r)-'V ln(Jr- ',,I) plus a small correction due to the wall. The
vortex trajectory is obtained by integrating Eqs. (5) and (6) simultaneously.
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FIGURE 4. (Left) Stream lines about a retrograde clump and a prograde hole. (Right) The

radial speeds of retrograde clumps and prograde holes of various strengths (I/r,,) in axisymmetric
background vorticity. Retrograde clumps: the xs and diamonds are numerical simulations, the
triangles are electron plasma experiments, and Eq. (8) is computed with c = 0.43. Prograde holes:

the circles are numerical simulations, and the squares are electron plasnia exlmeriments.

Neglecting changes to (b [Eq. (6)], a single vortex merely orbits the center of
background vorticity, with angular frequency dO,,/dt = r 7- ' (re). H-owever, as ex-
plained previouisly, the background vorticity perturbation causes the vortex to drift
radially. The radial velocity, dr,/dt, is sensitive to whether the vortex is retro-
grade or prograde. A vortex is retrograde if it. rotates against the local background
shear, whereas a vortex is prograde if it rotates with the local background shear.
Precisely, let S(r) denote the local shear-rate, r d(fDir -)/dr. Then, F,]/S(r,,) < 0
for a retrograde vortex, whereas F',/S(r,) > 0 for a prograde vortex. Here, we
consider examples in which the background vorticity decreases monotonically with
r, so that S(r) is negative. Therefore, in these examples, clumps are retrograde
and holes are prograde.

The stream lines about a retrograde clump and a prograde hole are shown ill
Fig. 4 (left). There are two stagnation points at radial distances ±1 fr-om the center
of the retrograde vortex, where

I 2r, (7)

In contrast, there are no stagnation points in the vicinity of a prograde vortex.
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Schecter and Dubin [13] derived analytical expressions for the radial velocities of
retrograde and prograde vortices, for the regime in which l/r, << 1. This regime
corresponds to a weak vortex in strong background shear. For a retrograde vortex,

d = ± () 2 1n(c r,/1), (8)
-- r = 2:- dr

where +/- is for clumps/holes, and c is a constant of order unity that depends on
the particular form of (b(r). For a prograde vortex,

d I d b ( r) 12"r = + - -(r) j2(9)

dt 47 dr

In both cases, the radial speed increases with the local background vorticity gra-
dient, and decreases as the local shear-rate intensifies. Note that the prefactor
(1/47) in Eq. (9) is much less than the prefactor (7r/2) in Eq. (8). Moreover, the
logarithmic factor does not appear in Eq. (9). Thus, as 1/r, approaches zero, a
prograde vortex will move orders of magnitude slower than a retrograde vortex of
equal strength.

The plot in Fig. 4 shows the radial vortex velocity (dr,/dt) as a function of
vortex strength (1/r,) for a set of numerical simulations, and for several electron
plasma experiments. In each case, a single vortex moved through a background
vorticity resembling that in Fig. 3(a).4 The simulations are described in Ref. [13],
and the experiments are described in Refs. [14,15]. The data compares favorably
to the analytical predictions of Schecter and Dubin. Recently, Kiwamoto and col-
laborators used a magnetized electron plasma to examine the motion of retrograde
clumps more extensively [16]. Their data also agrees with Eq. (8).

d V- d cb
The data in Fig. 4 are for cases in which E(r)=-: - /- - << I at the radial

dr \ri dr
position rv of the vortex. However, if 6(r7) surpasses a critical value, Eqs. (8) and
(9) become invalid, and the radial velocity of the vortex drops abruptly to zero. For
prograde vortices, Schecter and Dubin estimated that the critical value of E(rv) is
unity. For retrograde vortices, Schecter and Dubin estimated that the critical value
of •(r•) is of order v r (r,/1). Both estimates are consistent with numerical
simulations [13].

DANCING WITH THE DIOCOTRON MODES

The theoretical work of Schecter and Dubin [13] neglects the interaction of the
vortex with the global modes of the background vorticity, i.e., the diocotron modes.
While usually valid (Fig. 4), such neglect is unjustified if the orbital frequency of a
vortex resonates with a neutral, or weakly damped diocotron mode. In such a case,

4) There is one exception: the datum with error bars was obtained from an electron plasma
experiment in which there were two prograde holes [15].
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FIGURE 5. Example in which the radial motion of a chunp is controlled 1)y diocot,-on modes,
as opposed to a local background vorticity perturbation. (a) Initial vorticity distribution. (h)

Diocotron mode amplitudes and radial position of the clump versus time, in units of 27rR 2 /11'b. A

sequence of resonances causes the clump to merge with the core of the backgrounmdl vorticiity [17].

there can be significant radial iiotion even if -. b (rv) is zero, or if E(r,) is above its
dr

critical value. The following example illustrates this point.
Consider the initial vorticity distribution in Fig. 5(a). The background vorticity

(b(r) consists of a uniform core (r < I?), and an outer skirt (r > R), where the
vortex resides. By assumption, the vorticity in the outer skirt is negligil)le, so that.
Fb -- nR 2cb(O). In addition, dlb/drL- -ý&b(0) (r - R).

The background vorticity perturbation will be concentrated at the core radils
R. Expanding this perturbation in a Fourier series yields

(bi-4- rR 6(7 - R) a3 .. (t) cos[rnO - yý,(..., (10)

where Fb/lrR is a convenient normalization factor. The Fourier components are
the "diocotron modes" of the background vorticity. Exciting a diocotron mode
corresponds to displacing (m = 1) or deforming (in > 2) the core. In the following,
it will be assumed that the vortex is weak and that the mode amplitudes are sniall;
i.e., y = u,/Fb << 1, and a,,, << 1. Changes to the axisymmetric conmponent. of
background vorticity are of order a," and are neglected in Eq. (10).

The vortex-mode dynamics miay be put in Hamiltonian form [17]. The canoni-
call), conjugate variables for the inlth mode are (q,, P.) . (- a,,, a',/rn), and the
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canonically conjugate variables for the vortex are (qv, Pv) - (- v 0,,, f r,/R 2 ).
The equations of motion are Hamilton's equations: m, m) = (OpmH, -Oqm H),
and = i3v) (&9vH, -OqH), where (ignoring wall effects)

Fb
27rR 2 X 0011

{YlU(pv) + Z(m--1)pr - 23` 3E L qv- •

The first term in braces accounts for the advection of the vortex in the unperturbed
circular flow. The middle term accounts for the free propagation of diocotron
modes, in the absence of the vortex. The final term couples the vortex motion to
the modes. The Hamiltonian in Eq. (11) neglects mode-mode interaction terms,
which are of order a 2

Of course, the vortex-mode interaction conserves canonical angular momentum.
Minus the constant unperturbed background contribution, the (dimensionless)
canonical angular momentum can be written as follows:

0', 
2

a= 2a, + -y . (12)
m~ 1

Suppose that a clump (-y > 0) excites a mode. Then, E a2 increases. To conserve
P6, rY must decrease. In contrast, if a hole (-y < 0) excites a mode, r, must increase
to conserve PO.

Figure 5(b) illustrates the vortex-mode dynamics governed by the Hamiltonian
in Eq. (11). At t = 0, a clump (y =.0025) is placed at r, = r, = 1.418R, and
the mode amplitudes are all zero. The clump principally orbits the center of the
background with angular velocity dO,/dt -_ f;b(r,)/rv = Pb/27rr2. At r, = 1.418R,
this angular velocity equals the natural phase velocity of the m = 2 diocotron mode.
Consequently, the clump resonantly excites the m = 2 mode. By conservation
of P0, this resonance causes the clump to move radially inward. As the clump
approaches the core, dOv/dt increases. This causes resonances with higher order
diocotron modes: first the m = 3, then the m = 4, etc. The sequence of resonances
incrementally pulls the clump into the core.

Lansky, O'Neil and Schecter [17] derived a condition for which the clump will
merge with the core. For the case in which the initial clump position is ro
1.418R, -y must be greater than about 0.002. Otherwise, the initial oscillations of
r, [Fig. 5(b)] will not bring the clump close enough to the core to resonantly excite
higher order modes. Electron plasma experiments have yet to verify this merger
condition.

However, Durkin and Fajans [18] have used a magnetized electron plasma to
examine the interaction of diocotron modes with a clump that is already inside the
core (r, < R). In this case, there are no vortex-mode resonances. Nevertheless,
the clump can weakly excite the diocotron modes. This creates a wave along the
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edge of the core. Eventually, the wave breaks. The wave-breaking process alters
the background vorticity profile, and can generate one or more vorticity holes.
The measured wave-breaking time is p)roportional to -y' In(7-y) 1)provided that
r, < 0.7R. This result agrees with a recent theory by Jin and Dubin [19].

Clearly, background vorticity enriches 2D vortex dynamics. Background vorticitv
can cause the spontaneous formation of vortex crystals (Fig. 2), and( can spatially
separate vortices of opposite sign (Fig. 3). Recent work in non-neutral plasnia
physics has shed some light on 2D vortex dynamics with background vorticity, but
surely more surprises await.
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