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Modes in a Nonneutral Plasma Column

of Finite Length

S. Neil Rasband and Ross L. Spencer

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

Abstract. A Galerkin, finite-element, nonuniform mesh computation of the mode
equation for waves in a non-neutral plasma of finite length in a Cold-Fluid model gives
an accurate calculation of the mode eigenfrequencies and eigenfunctions. We report
on studies of the following: (1)finite-length JTrivelpiece-Gould modes with flat-top and
realistic density profiles, (2)finite-length diocotron modes with flat density profiles.
We compare with the frequency equation of Fine and Driscoll [Phys Plasmas 5, 601
(1998)].

INTRODUCTION

The familiar Cold-Fluid drift model for the nonneutral plasma gives inside the
plasma the mode equation for the perturbed potential [1].
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FIGURE 1. Region of Computation
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The computation region is illustrated in Figure 1 with 0 < r < rw,•l and 0 < • <
Zw,![ where the plasma in this region is confined to the region with the crosses.

Equation (1) can be written in the form

V (. V'I'0) = 0,

where

if Or dr 0

E = -i(2)

0 0 1 - ,r,

and
aqB q 0¢oMC 7701 o- I,mc mf"Or'

Construct a decomposition of the region of interest into triangular elements,
where the plasma boundary is approximated by edges of the triangles. Figure 2
shows an example with r = 3.81cS n and Zw,, 30cm.

Quarter cylinder mesh

U

0 m

0 10 20 30-z(cm)-

FIGURE 2. A triangulation of a plasnia equilibrium. The region occupied by the plasma is

shaded. Note that the scales for the vertical and horizontal axes are not the same.

Each triangle has 6 nodes (3 mid-points for the sides and 3 vertices) and on each
node I a parabolic function:

T I(X, y) = /0 + •2•, + •3Y + 0,12 + •35xY + /fnY2 .

This function is defined so that it has value 1 at the Ith node and 0 at all other
nodes in the triangle. Then approximate I(D) as a sum over nodes:

()( y) 1 TCI I(x, Y).

I
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Boundary nodes have the C, determined from boundary conditions on (DI)()x, y).
The Galerkin integration of Eq.(1) multiplied by the approximating functions

Tj proceeds numerically by doing one triangular element at a time. If the element
is outside the plasma, then e = 1, otherwise it is as given in Eq.(2). This gives a
matrix equation for the CI.

ZAjiCi = 0
I

with nonzero values of Ci only for certain values (eigenvalues) of w. In practice we
set

ZAjiCj = 1, for each J (3)

and look for w such that max(CI) -+ oo or so that 1/ max(CI) --+ 0.

TRIVELPIECE-GOULD (M=O) MODES

As a first example we present the results for a flat-top density profile with the
plasma edge at rplasma = 1.89cm, Zplars,,,a = 17.71cm. The triangulation for this
equilibrium is shown in Figure 2. The aspect ratio a = 9.37 and rplasma/rwall =

0.496. For the modes that can be compared with the results in Table II of Jennings,
Spencer, and Hansen [2] the agreement is excellent.

Figure 3 shows a scan in frequency for even modes in z with some of the prominent
modes indicated.
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FIGURE 3. Scan of 1/max(Cr) as described following Equation (3) for even modes.
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A similar scan in frequency for the same equilibriuml but odd modes gives fre-
quencies w/lw, = 0.1079,0.3060,0.4630,0.5766 for the modes (1,0), (3,0), (5,0).,
and (7,0), respectively. Figure 4 shows the perturbed potential eigenfunctions for
some of these modes.
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FIGURE 4. Perturbed potential cigenfunctions for selected nodes

Lastly, for m=0 modes we consider briefly the effect of a radial dependence in
the density profile. We compute equilibria [3] whose midplane density is

n(")/n0 = (1 - Vfi.5/v)(,/,w ,i)2) eXp(-(7./7,1),).

We choose rl = rwY,,/2 and compare two choices for v, v = 5.0, 40.0, corresponding
to a more-or-less average monotonic profile and a flat profile, respectively. Figure 5
shows the profiles with the corresponding (2,0) nmode frequencies. The changes in
the mode frequencies for such changes in density profiles are on the order of 10(X.
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FIGURE 5. Density profiles and frequencies for (2,0) modes.
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THE DIOCOTRON (M=1) MODE

We examined the finite-length diocotron mode frequency for a number of differing
equilibria with varying plasma radii. All equilibria have flat-top density profiles
and are computed in a Malmberg trap with radius rwall = 3.81cm, half-length
Zwa,, = 30.0cm and magnetic field 375 G. Figure 6 shows the shift in frequency

from the infinite length result as a function of the plasma radius. This figure also
compares these results to those obtained with the formula of Equation (24) in Fine
and Driscoll [4].

Diocotron Frequency Shift vs Plasma Radius
1.3

- Fine & Driscoll formula
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FIGURE 6. Diocotron frequency shift as a function of plasmia radius.

For the case of rwall/rplas,1 = 2.0 Figure 7 shows the shape of the perturbed

plasma potential in the quarter cylinder computation region. For a fixed z value

less than the plasma half-length it is evident that inside the plasma the perturbed
potential dependence on r is almost linear. A detailed examination of these eigen-
functions shows that inside the plasma their dependence on r is like r + ar3 

+ ...

and in z like 1 + bz 2 + ... with a and b small for long plasmas. This is consistent
with solutions inside the plasma that go like a modified Bessel function I, in r and

cosh(kz) in z, with k very small corresponding to a wavelength much longer that
the length of the confining cylinder [1].

This curvature in r is readily seen for a pancake-like equilibrium. In Figure 8
we show the edge curve for a pancake-like equilibrium with rplasma = 2.524cm and
Zplasrna = 0.138cm for an aspect ratio of a = 0.055. This Figure also includes a plot
of the scaled perturbed potential as a function of r for a fixed value of z where the
curvature is readily apparent. The m=1 diocotron mode for this equilibrium has a

frequency of W/Wpe = 0.00902.

339



Potential *(r.z)

200

FIGURE 7. Perturbed Potential in the quarter cylinder for a m=1 diocotron mode

Plosmo edge curve for pancake equilibrium 0(r) at a fixed value of z
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FIGURE 8. Pancake-like plasma edge and perturbed potential as a finiction of r for a fixed
value of z = 0.05cm
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