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Abstract. A new monoenergetic slow antiproton beam facility has recently been installed at the
CERN Antiproton Decelerator (AD). The system is designed to deliver pulsed or continuous
antiproton beams in the 10-1000 eV energy region which is suitable for various interesting
atomic and molecular spectroscopic and collision studies. The antiprotons obtained from the AD
are slowed down to around 100 keV by passing the Radio Frequency Quadrupole Decelerator
(RFQD) and then captured in a multi-ring electrode ion trap. After electron cooling down to a
few eV, the antiprotons will be extracted out from the trap into a collision chamber via a
differential pumping system. In this paper, we present recent results in which the antiproton
capture and cooling phases of this scheme have been successfully demonstrated. Furthermore,
the design and tests of the extraction and differential pumping system are presented.

INTRODUCTION

A new monoenergetic slow antiproton beam facility has recently been installed
at the CERN Antiproton Decelerator (AD) [1]. The system is designed to deliver
pulsed or continuous antiproton beams in the 10-1000 eV energy region which is
suitable for several interesting atomic and molecular spectroscopic and collision
studies. Such a slow antiproton beam will be produced in several steps [2,3]. The
antiprotons are initially provided by the CERN Antiproton Decelerator (AD) ring at
5.3 MeV/u and slowed down to around 100 keV when passing through a Radio
Frequency Quadrupole Decelerator (RFQD). The beam is further slowed down to
around 10 keV by passing a degrader foil. The particles are then trapped inside a
multi-ring electrode trap. In the trap the confined antiprotons form a non-neutral two-
component plasma together with previously trapped and synchrotron radiation cooled
electrons. This configuration eventually causes electron cooling of the antiprotons
down to a kinetic energy of the order of 1 eV. The cooled antiprotons are then to be
extracted and transported to an experimental chamber where the beam intersects with
an atomic or molecular gas target beam. However, since it is unavoidable to have a
relatively high background pressure in the collision chamber (~10 Torr) and the
required pressure inside the trap must be very low (<10'” Torr), it is necessary to
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utilize a transport beam line equipped with a differential pumping system between the
two regions. One of the difficulties with extraction of charged particles starting inside
a solenoidal magnetic field is that the unguided trajectories tend to follow the field
lines, which are strongly diverging at the ends of the magnet. Furthermore, focusing of
the beam even outside the magnetic field is in general limited which is a direct
consequence of the conservation of total angular momentum. In addition, the finite
dimension of the plasma source must be considered in any realistic extraction scheme.

EXPERIMENT

The ion trap consists of a set of ring electrodes positioned coaxially inside the
bore tube of an Oxford 5 T superconducting solenoid magnet. See Fig. 1. The details
of the design of the electrodes and the cabling system have been previously reported
[2-5]. The size of the magnet coil is approximately 1.8 m in length and 22 cm in inner
diameter. The pressure measured outside the bore tube has typically been around 2x10°
19 Torr. However, since the temperature of the bore tube can be lowered to around 10
K or even lower during measurements it is expected that the pressure in the trap region
is at least one order lower than this value. A 200 pg/cm® carbon degrader foil is
positioned 60 cm upstream of the magnet center which is used to degrade the
antiproton beam received from the AD via the RFQ decelerator. Electrons are injected
by a Spindt-type electron emitter [6] from down stream of the magnet coil, a few cm
off the magnet axis and guided by the converging magnetic field into the trap region.
A set of Cherenkov counters and plastic scintillator track detectors were positioned
outside the magnet in order to monitor the time of arrivals and positions of charged
pions emitted after antiproton annihilations [7].

The design of the extraction beam line was based on detailed Monte-Carlo
simulations using a commercial software by Field Precision, which works well within
a PC environment. By defining the geometries of the solenoid coil and the electrostatic
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FIGURE 1. Schematic cross section of the ASACUSA trap electrodes. The electrode named S is
segmented into four pieces.
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FIGURE 2. Schematic cross sections of a) the ASACUSA trap and extraction beam line electrodes and
b) the extraction beam line electrodes. The beam travels from down to up in the figure. See the text for
further information.
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lenses and also by defining the current density and respective voltages, dense matrices
representing both the static magnetic and electric fields were obtained. The initial
conditions of a large number of antiprotons representing the plasma source were
defined by assuming an antiproton plasma in the trap of a cylindrical shape with 2 mm
in diameter and of homogenous density. Furthermore, it was assumed that the
antiprotons have energies of 1 eV in the perpendicular direction relative to the
magnetic field. The trajectories of the antiprotons extracted from the trap region were
then calculated and the focal properties of the beam in the target chamber were
estimated at several extraction energies. An optimized configuration could be found
for maximum transport and focusing at the beam intersection point in the experimental
chamber. See Table 1. The effective values of the diameters are given by 4x,,,; where
Xms is given by the root-mean-square of one transversal coordinate at the focal point
for all the studied trajectories. The effective values of the divergence angles are given
by 2x’,,s where x ', is given by the root-mean-square of the slopes relative to the
beam line axis at the focal point for the same trajectories [8]. Minimization of these
values, each representing an envelope of the respective beam parameter, while keeping
a 100% transmission efficiency of the system were the main criteria of the design. In
addition all the practical requirements on vacuum, high voltage electrostatic lenses,
materials etc. were taken into account. A schematic overview of the resulting design
can be observed in Fig. 2.

After capture and cooling, the antiprotons are extracted from the trap by raising
the potentials of electrodes F2, F1, FH2, FH1, BH1, S, BH2 and B1 up to the potential
of electrode B2, which is kept lower than the potential of electrode F3 (see Fig. 1).
The electrodes HVF and HVB are at this stage kept at ground potential. The
antiprotons then enter the beam line electrode system, which penetrates into the
homogenous part of the solenoidal magnetic field as illustrated in Fig. 2a. After
passing a grounded electrode the antiprotons reach the electrodes with a potential B,
which accelerates or decelerates the antiprotons to a kinetic energy of few hundreds
. ¢V inside the beam line, see Fig. 2b. Around this position they also pass a double set
of electrostatic x-y deflectors, which provides a mean to align the trajectories against
the beam line axis. The beam then reaches electrodes and an aperture, which are kept
at a potential L1 as can be seen in Fig. 2b. Here a cylindrically symmetric accelerating
electric field forces the beam to pass the aperture, which is high voltage floatable and
of adjustable size. The typical maximum kinetic energy of the beam around the
aperture is a few keV. Exiting the aperture the beam is decelerated down to a few
hundreds eV. This deceleration provides further focusing which at correctly applied
potentials makes the antiprotons leave the lens system again as a parallel beam. With
an aperture size of 4 mm in diameter it is estimated that the pressure downstream of
the aperture can be kept around 100 times as high as the pressure upstream. The

TABLE 1. Antiproton beam focus parameters versus extraction energy.

Extraction energy (eV) Effective beam diameter Effective divergence angle
(mm) (deg)

10 6 118

100 5 16.5

250 4 +4.9




minimum measured background pressure after baking in the downstream region is in
the 10" Torr region, which is obtained by a 1000 /s turbo molecular pump. The
functions of the lens systems kept at the potentials 1.2 and L3 in Fig. 2b are exactly the
same as for the one just described. Down stream of the aperture kept at the potential
L2 a 400 I/s turbo molecular pump gives a background pressure in the 10°° Torr range
while turbo molecular pumps installed in an experimental chamber will provide the
pumping downstream of the aperture at potential L3. The three apertures set at sizes
around 4 mm in diameter thus provide the required differential pumping efficiency.
The beam is finally focused into the experimental chamber by passing the electrode at
potential F and finally a grounded electrode as illustrated in Fig. 2b. The focal point of
the beam is 25 mm downstream from the end of the last electrode, which is at ground
potential. To eliminate any electric stray fields at this point it is possible to attach a
mesh to the downstream surface of this electrode. To optimize the extraction and
transportation of the beam there are two detectors installed along the beam line which
functions are to monitor the beam profile. The first one, which is marked MCP
DETECTOR in Fig. 2b, is a microchannel plate system equipped with a delay line
anode. This will give information on both the arrival timing and the position of each
detected antiproton. The downstream detector of the beam line, marked WIRE
CHAMBER DETECTOR in Fig. 2b, gives the possibility to measure the beam profile
during pulsed extraction while providing a high transmission.

RESULTS

Before starting experiments with antiprotons it was shown that we could trap and
compress electrons, H™ and positive ion plasmas using the described trap system.
During these experiments we also performed non-neutral plasma diagnosis by utilizing
a tank circuit. These results are described in detail elsewhere [4]. During our first four
weeks of AD beam time in June 2001 the following results were acquired.

Fig 3a exhibits the signal from a Cherenkov counter detector positioned close to
the end of the magnet closest to the RFQD. At this end a gate valve is mounted which
in this case was closed, thus blocking the beam. The time scale is relative to a given
start signal which is correlated to the arrival of antiprotons kicked out from the AD.
As can be observed, pulses arrived and annihilated against the gate valve at 1.25 us
and at 1.75 ps, each corresponding to incoming antiprotons of 5 MeV and 85 keV
energies respectively. The pulse with the lower energy corresponds to antiprotons
decelerated by the RFQ Decelerator. By observing the corresponding signal from a
Cherenkov counter positioned close to the gate valve mounted at the opposite end of
the magnet and with the other gate valve opened an additional broader feature was
found at around 3-5 ps, see Fig. 3b. This indicates that the antiprotons had undergone
further deceleration due to passage through the carbon degrader foil when entering the
magnet. The energy corresponding to the position of this peak is 20 keV and lower.
By applying a —10 kV potential to the trap electrode HVB as seen in Fig.1, it was
observed that the low energy tail of the degraded energy peak was reduced. This is
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FIGURE 3. Signals acquired with a Cherenkov counter a) positioned upstream of the trap with the
upstream gate valve closed, b) positioned downstream of the trap with the upstream gate valve opened,
¢) positioned downstream of the trap showing the difference between with and without 10 kV applied
to electrode HVB and d) positioned upstream of the trap with the upstream gate valve opened and with
—-10 kV applied to electrode HVB. See the text for further information.
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illustrated in Fig. 3¢, which is a spectrum showing the signal difference obtained with
the high voltage on and off. The peak with a maximum at 3.5 ps is thus explained by
reflection of low energy antiprotons towards the entrance end of the magnet. This was
confirmed by again observing the signal from the upstream Cherenkov counter, which
showed an additional low energy peak when high voltage was applied (see Fig. 3d).

The next step was to confirm confinement of antiprotons. For this purpose the
plastic scintillator detectors were positioned in parallel to the magnet axis. By
applying the —~10 kV potentials to the electrode HVF (see Fig. 1) of the trap before the
reflected antiprotons could escape as in Fig. 3d they could be trapped. After 1 s they
were released by removing the high voltage potentials, which quickly resulted in
annihilation as can be seen in Fig. 4a. A rough estimate of the number of captured
antiprotons is given by counting the number of pulses within the peak around 1 s and
by taking the solid angle of the detector and the multiplicity of the charged pions
emitted after annihilation into account. This gives a number around 300000
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FIGURE 4. Signals acquired with a plastic scintillator detector positioned parallel to the trap magnet.
The panels show a) antiprotons annihilating after 1 s trapping time and b) electron cooled antiprotons
confined in a well of 100 V depth after the —10 kV high voltages applied to the end electrodes of the
trap have been turned off after 20 s trapping time.
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antiprotons captured from one shot. Furthermore, it was also shown that we could cool
down the captured antiprotons to less than 100 eV and probably much less. This is
exhibited in Fig. 4b, which again shows the signal acquired with the plastic scintillator
detector. However, 50 s before the antiprotons were captured, 60 eV electrons were
injected and confined within the trap region. Previous experiments had shown that the
number of trapped electrons during identical conditions was of the order of 10°. At the
high magnetic field utilized in these series of measurements (3.3 T) the electrons
quickly loses their kinetic energy due to synchrotron radiation. The —10 kV high
voltage potentials applied to the end electrodes of the trap was turned off at 20 s after
the antiproton injection which can be seen in Fig. 4b as a narrow peak. However, a
well of depth 100 V was kept on until 50 s after the injection. It can be clearly seen in
the figure how the annihilation continues up to this time, which shows that there are
still antiprotons inside the trap region after the high voltage has been turned off.

Our next goal during the allocated AD beam time in October 2001 will include
extraction studies of the slow antiprotons. Here we briefly report on experiments in
which the above-described system was used to extract slow positive ions from the trap
to the focal point. By ionizing the residual gas inside the trap region with the electron
beam, positive ions were created and trapped. These ions were extracted from the trap
by using the same procedure as previously described for antiproton extraction but with
the opposite sign of the applied potentials. For instance, the potential applied to the

a)

b)

FIGURE 5. The raw signal obtained from the second aperture via a charge amplifier with potential L1
set to a) -500 V, b) —3410 V, and c) -4500 V. The changing trap well potential was used as a trigger
pulse. The vertical scale is 500 mV/div and the horizontal scale is 10 ms/div. The gain of the charge
amplifier is 164 mV per 10° charged particles.
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trap electrode B2 was in one case set to 500 V. The ions then entered the extraction
beam line electrodes with kinetic energies around 500 eV and were decelerated down
to around 250 eV by setting B in Fig. 2b to a potential 250 V. The positive ions
reaching the aperture of the lens L2 (Fig. 2b), which in this case served as a Faraday
cup, were monitored with a charge amplifier while varying the potential L1. As can be
observed in Fig. 5 there is certainly a dependence on the applied potential L.1 and the
maximum throughput was obtained at L.1=-3410 V, which is the value predicted by
the calculations. By utilizing the second and third lens systems (marked by L2 and L3
in Fig. 2b) the extracted ions were transported to the focal point of the beam line
where the current of positive ions reaching the surface of a MCP detector was
measured. A rough estimate gives that 10° positive ions per extraction reached the
focal point at 250, 100 and 10 eV extraction energies with the apertures set at 6 mm in
diameter.

In addition slow extraction tests monitoring the beam profile after the first
aperture with the MCP detector system (see Fig. 2b) equipped with a delay line anode
were performed. Figure 6 shows some examples of these results acquired during
similar conditions except for different L1 voltages (see Fig. 2b). The ions were
extracted at 250 eV. According to the discussed calculations the transmittance of the
beam should at this extraction energy be at maximum for L1=-3640 V. This seems to
be confirmed by the experiment since the measurements with L1=-3000 V (Fig. 6a)
and L1=-4000 V (Fig. 6c) both exhibit a weaker signal compared with the case of a
correctly applied potential (Fig. 6b). During these tests, the positive ions were
extracted very slowly from the trap, even during periods up to several tens of seconds.
It was observed that the current and the beam profile remained almost constant during
the extraction. A similar detector is presently being prepared in order to monitor the
antiproton beam profile measured at the focal point of the beam line.

a) b c)

FIGURE 6. The beam profile as measured by a position sensitive MCP detector during slow extraction
of positive ions from the trap via an aperture of 4 mm in diameter. The applied potentials L1 were a) —
3000 V, b) -3640 V (optimized according to calculations) and ¢) 4000 V.
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CONCLUSIONS

The most important technical features of the slow antiproton extraction beam line
were described. Recent results of the antiproton capture and cooling phases were
presented. Furthermore, preliminary test results of the extraction beam line using
positive ions were presented showing the possibility to extract charged particles as a
slow beam from the trap via a three-stage differential pumping system. The system is
now ready to be tested and optimized for the delivery of a slow antiproton beam at
CERN.
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