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A slingatron is the name given to a propellantless mechanical means of
launching a projectile. To date, slingatrons are only conceptual in nature,
but their potential use as a ground-to-space launch mechanism for
unmanned payloads is under investigation. Slingatrons can be configured in
a variety of geometries; one form consists of a spiral track (or launch tube)
that gyrates at a constant frequency about a set radius. Under proper
conditions (design parameters), a projectile entering the spiral at its small-
radius end will undergo nearly constant tangential acceleration before
exiting. The differential equations governing the motion of the projectile
within the spiral are highly non-linear, making the optimum design solution
non-intuitive. This report describes how the slingatron works from first
principles, then uses the numerical integration procedures within the
computer software environment of Simulink® and MatLab® to search for
and identify the optimum design solution parameters based on structural
dynamics and mechanical design considerations.

PURPOSE OF STUDY

The cost of launching payloads into space is currently around $10,000 per pound.
Although this expense may be acceptable for manned space missions, it can be a curtailing
financial burden for other potential enterprises. Less expensive, alternative methods of
launching acceleration-insensitive bulk items into space is thus an area of interest. The
slingatron is a proposed (propellantless) means of launching objects for such missions (Tidman
et al. [1], Tidman [2,3], Tidman and Greig [4]). This study describes the operational principles
of the slingatron and investigates the range of possible design solutions using Matlab and
Simulink software; thus, bounding the physical scale of this mechanical device.

OPERATIONAL PRINCIPLES OF A SLINGATRON LAUNCHER

Those who played with a hoola-hoop as a child, and remember how the sound of the
ball's speed within the hoop increased with the gyration rate of the hips, might recognize the
similarity with a projectile in a slingatron. Figures 1-3 show the progression of forces in
action in going from uniform circular motion to circular slingatron (or, hoola-hoop-type)
motion. Specifically, Fig 1 displays uniform circular motion of a ball of mass m about a circle
of radius D, with velocity i, and centripetal force ED (all of constant magnitude).
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FIGURE 1. Uniform Circular Motion.

The speed of the ball in Fig 1 can be increased by orienting the normal force acting on
the ball so that it has a tangential as well as a centripetal component. This could be done by
envisioning a rotating wedge as shown in Fig 2. As the circular speed of the ball increases
under the tangential force, so too must the angular velocity of the supporting wedge, as well as
the normal force of the wedge on the ball, illustrated in Fig 2. (Note, if y in Fig 2 is positive,
the speed will increase; if y is negative, it decreases; and when y = 0, the speed stays constant,
equivalent to Fig 1).
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FIGURE 2. Non-Uniform Circular Motion Created by the Tangential Force Component of a

Rotating Wedge (or Wave).

The effect of the rotating wedge (or wave) on mass m in Fig 2 can be duplicated by
employing a gyrating ring of radius R, and therein lies the operational principle of the circular
slingatron (or hoola-hoop), as shown in Fig 3. As indicted in the illustration, the gyrating ring
can provide the same boundary geometry and normal force as the wedge. Like the wedge, the
frequency of gyration, •, must increase in order for the ring to maintain its support for, stay in
phase with, the object.
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FIGURE 3. Non-Uniform Circular Motion Created by a Gyrating Ring.
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In addition to the hoola-hoop, Fig 4a, swirling liquid in a cup by moving the hand in a
circular pattern (oxidizing wine in glass, for instance) is another practical example, Fig 4b, of
the same effect. In this case, the wave in the fluid moves up and around the sides of the
cup/glass. (As a practical exercise, hand swirling liquid in a cup reveals how important the
gyration phase angle is to maintaining, or increasing, the wave speed/amplitude.)

(a) (b)

FIGURE 4. Slingatron-Like Motion of (a) a Hoola Hoop or (b) Swirling Liquid in a Glass.

Unlike the wedge in Fig 2, which rotates with the object, the ball in Fig 3 must execute
circular motion within the gyrating ring. This relative motion can be detected in the illustration
by observing that the ball is in contact with different shaded arc lengths along the gyrating ring
as it moves about it's circular path of radius D. Thus, a frictional force of the track on the ball
needs to be considered. Figure 5 shows the general orientation of the normal and frictional
force on the object, as well as specifying a set of reference angles. It can be said that the ring
radius, R, lags the gyration radius, r, by the phase angle6 (= q1 - (P).

Thus far, the discussion has been limited to a circular slingatron track. However, such a
configuration poses the practical problem of designing a mechanical gate to release the
projectile after it reaches the sought after speed, e.g., earth-to-space "escape" velocity. For this
reason, an open-ended spiral slingatron is a more feasible projectile-launching track geometry.

Making the conceptual transition from a circular to a spiral slingatron is facilitated by
viewing a spiral that is composed of interconnected semicircular arc lengths, Fig 6(a). At any
given location, the track is moving within a gyrating circular path, as it was in Fig 5. Here,
however, the radius of the circular arc changes every half-revolution, so that an object moving
within the launch tube must accelerate in order to complete one revolution in phase with
gyrating track, Fig 6(b). Thus, it is conceivable that (under the right normal and friction force
conditions) the object can accelerate, even if the period of gyration is constant.
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FIGURE 5. (a) Normal and Frictional Force, With (b) Tangential Components, of the Ring on the Mass.
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FIGURE 6. Spiral Slingatron, (a) Initial and (b) First Four Quarter-Cycle Gyration Conditions.

EQUATION OF MOTION FOR A SLINGATRON LAUNCHER

The trajectory of the object in Fig 6 is redrawn in Fig 7, with the track and the object in
motion suppressed to facilitate visualization of the object's velocity, force, and angular
orientation. Unlike the gyrating ring of Fig 5, where the normal force was always directed
toward the center of the ring, the direction of the normal force in the gyrating spiral depends on
the spiral geometry, R = R(0). It can also be characterized by the angle 13 (Fig 7), defined
below. Note that if R does not change with time (or 0), the spiral is actually a circle and f3= 0.

13 =tan-l -- =tan-'i -(j (1)

Aided by Fig 7, the x- and y-components of Newton's second law of motion for an
object of mass m in the spiral slingatron are:

M. - ýL I cos{t-13-nP -7 I sin{0-fP-4)

A ll sin to- 01- 111 cos 10 - 13}
(2)

mn = F sin~10 - -7r} + AllI cos 10-P - ir}

= - FI sint0- P}- Il cos{0- p}
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FIGURE 7. Kinematics of a Spiral Slingatron Trajectory.

In general, the force parallel to the track is not only due to track friction, but air
friction/drag as well; therefore, assume that

FII = y 1 I_ + PA , (3)

where y is the coefficient of friction between the circulating mass (ball) and the gyrating track.
P is the average frontal air pressure, and A is the object's frontal cross-sectional area. Using
Eq 3 in Eq 2 yields:

mX(sin{p-f3}+ ycos{ - 0}) + mj(y sin{ -I3}-cos{-fil})= PA (4)

Furthermore, in keeping with the geometry designations of Fig 7, the x and y
components of the objects location can be written as

x r cos {f I + Rcos {1}
(5)

y = rsin{iJI}+ Rsin{1}

Bearing in mind that r is constant, and R = R((),
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dR coso-Rsinol + d 2 coso - dR sio-Rcosol

-IV [rsinVp]- iV2 [rcosly]
(6)

R = sind+Rcoso + 02d- -sin +2d c° d -Rsino

+ Vi [rcosV]-] 2 [rsinV]

Combining Eq 6 and Eq 4 yields the equation of motion for the spiral slingatron, viz.,

R " [tanf3(ucos3 - sin f3) - (cos /3 + psin/3)]

+ 2 [(dtan/3 + tan ]'

Sd tan 2 _1 (Jcosp - sin 0) - 2 tan P (cos 0 + fpsinlpj

+ [sinfl{sin(V - ))-ptcos(iV -) 1 , (7)

L- cos /3{cos(V - 0) + ,usin(qf - O)J

cos2 cos3{sin(Vj - ) - pcos(Qy - O)} PA 0L+ sinI3{cos(q -O) + psin(q- ¢)}J m

with/3 given by Eq 1.* Note, if the spiral collapse into a circle, then /3 = 0 and the equation of
motion for a circular slingatron becomes,

'R + 02 uR + rqi[cos(q -o)+ lpsin(iV-o)]-rq 2Z[sin(V - ) -lycos(V - 0)]+PA = 0 (8)
m

In this investigation, the only solutions of interest are those for which the gyration rate
is steady, i.e., V• is constant. (It is envisioned that size of the spiral slingatron required for

earth-to-space launch will be so massive, that it would be difficult to provide such a large

"With the exception of the pressure term, Eq. 7 agrees with the equation of projectile motion in a gyrating and
evacuated spiral launch tube, as derived by D. A. Tidman in his unpublished notes, dated November 11, 1997.
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structure with any substantial angular acceleration over the short time period that the projectile
traverses the launch tube.) Looking for solutions with 41 0 means the motion of an object in
the spiral slingatron will conform to

R ý [tan I3(pcos3 - sin 13) - (cos P3 + jisin()]

•2[(dtanfl + tan

+R2 ---- + tan2 l-1 (,Pcosp-sinlP)- 2tanI3(cosI3+Iisin1(
Id (9)

+ r co2 f3(c{sin(4lt-O)-'ucos(Vt-o)}-={sin(O)-lPcos(O)}) PA = 0

+ sin P( {cos(f - 0) + pesin(y/ - ,)}- {cos(O) + psin(O)}) m

Clearly, this differential equation of motion is non-linear. A numerical solution is the
only one possible. To this end, the numerical integration techniques within Matlab and
Simulink (both marketed by Mathworks Inc.) are used here to solve the problem. However,
before invoking these solution algorithms, both y and P need further clarification. For
simplicity, the straightforward analytical expression given in Eq lo will be used for the
average frontal pressure on the object in the slingatron, viz.,

p= Pýy(y + I)M 2  (10)

2

Here, M is the Mach number of the projectile through the air ahead of it, in which the gas
pressure is P., y = 1.4, and the sound speed is 335 m/s. Under these conditions, it was found
that air drag can significantly retard the acceleration of the projectile, unless the launch tube is
partially evacuated. Since this study is primarily interested in finding the range of possible
solutions, it was assumed from the outset that the launch tube could be pumped down to a
pressure of P•,= 0.01 atm = 1.01xi0 3 N/m 2 .

The friction coefficient, y, is also found to play a significant role in determining the
size and speed of the slingatron needed to achieve the requisite earth-to-space escape velocity,
assumed here to be 8 km/s. Tidman [6] has obtained experimental data on It for speeds up to 2
kmrs; a curve fit to that data yielded Eq 11. Until a broader range of data can be sampled, Eq
11 will be utilized to compute yu as a function of the object's velocity.

0.12

1.0 + 2.43x10- 3 1 11

This expression can be derived from Equation 3.5, page 64, of Liepman and Roshko [5], in the limit of

P/P» >> 1, i.e., high object/projectile velocity.
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SOLVING THE EQUATION OF MOTION

Spiral Slingatron Parameters

Since iý is the angular rate at which the spiral track gyrates, it is not a variable, but
rather, a parameter of the problem. Likewise, the radius of gyration, r, is a parameter, as is the
mass, m, and cross-sectional area, A, of the projectile. Depending on the geometry of the
spiral, its description can involve several parameters, for instance, a circle requires one
parameter-the radius. For simplicity, a two-parameter Archimedes spiral is assumed here, of
the form

R(O) = a 0 + Ro ,(12)

where a and Ro are the two parameters. Initial conditions are also needed to specify the starting
angles, Vo and 0o, as well as 'o. Thus, in total, there are 9 parameters that need to be specified

in order to unambiguously solve Eq 9. However, not all of these parameters are varied in this
exploratory investigation. In particular, 0 is taken to be a constant, thereby defining a
reference axis; also, the mass m is taken to be a constant, as is the projectile's cross-sectional
area A. Furthermore, it is assumed that 0o is the same as i', i.e., there is no initial time rate of

change in the phase angle, 0. Hence, the number of parameter that will be varied in this study
is reduced from 9 to 5.

Solution Results

Although a large range of solutions will ultimately be explored, a small subset is chosen
first, in order to demonstrate that some parameters have more influence on the solution than
others. With this in mind, the initial range of parameters is taken to be:

77r 97r I1I
= - - , rad/s r = 7.5, 9.5, 11.5 m

2' 2' 2
00 = V Ro = r+8, r+10, r+12 m

7 r 7r 1 (13)
V0= - - ad 7r ir 7r
8 8 10' 12 ra.0 - -, 00 rad a 0.175xr, 0.225xr, 0.275xr m

00 = 0 rad 8 10 12

m = 1,000 kg A 0.086 m2

A command procedure was written (containing a series of nested loops), whereby the
computed Simulink solution of Eq 9 (using Eqs 1, 10, and 11, for /3, P and Y, respectively) is
obtained for each of the 243 combinations of parameters/initial conditions set out in Eq 13. A
solution for 0(t) was considered acceptable, for the purpose of launching a projectile into
space, if the computed value of the projectile's speed within the spiral track, viz.,
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I ý = /X 2+7

k2 + (ryý) 2 + (Ry) 2 + (2ViýRr)cos0 - (2yr lk.r)sin0 , (14)

= (0ay + (r V)2 + ([a¢+R 0 ]0 )2 + (2Vq0r[a0+Ro])cos0 - (2VO ar)sin0

reached 8 km/s, at any time. Out of the 243 solutions, only 90 produced a projectile speed of at
least 8 km/s. One such solution,

= 11- 1 rad/s r = 5.5 m

2

¢o = Yý Ro = r+12 m

V 0 =Iradl ' (15)

12 0o - rad a= 0.275xr m

00 0 rad J 12

m = 1,000 kg A = 0.086 m2

yielded the results shown in Fig 8.

x14
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FIGURE 8. Velocity and Phase Angle vs. Time, Based Upon the Simulink Solution of
Eq (9) for the Conditions of Eq 15.
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It appears from Fig 8 that the solution for the missile's speed, Eq 14, increases in a
near-linear fashion, almost independent of the phase angle, 0 = Y/ - 0, until such a time (-40 s)

that the phase angle exceeds some critical value, here -0.6 'n rad (-108 deg), above which it
grows rapidly while the speed declines. However, the decline in speed in this case occurs well
above the sought after launch velocity of 8 kim/s, which requires -17 s for this particular set of
slingatron parameters. Figure 9 plots the acceleration of the projectile in the tangent and
normal directions to the spiral. Although it is the non-zero tangential acceleration that gives
rise to the speed increase in Fig 8, it can be seen that this component is minor in comparison to
the acceleration that the projectile undergoes in the direction normal to the track (e.g., -100 g's
vs. -14,000 g's at the time the projectile reaches 8 km/s).

16000

"5 14t000

. 12000

10000

M - Accel. Normal to Spiral
"- Accel. Parallel to Spiral

• 40(00

2000

6 8 10 12 14 16 18 20 22 24

Time (s)
FIGURE 9. Acceleration vs. Time, Based Upon the Simulink Solution of Eq (9) for the

Conditions of Eq 15.

The high acceleration of the projectile normal to the track requires a large normal force,
creating a substantial wall pressure, displayed in Fig 10. In practice, a track formed from steel
pipe would require a considerable wall thickness to accommodate this level of pressure. A
finite element model was formulated to analyze the problem. In particular, a time varying
pressure load was swept across one side (180 degrees) of the inner surface of a steel tube,
Fig 11, assumed to be hinged at both ends. A plot of the peak hoop (circumferential) stress in
the tube as a function of wall thickness is shown in Fig 11, for various pipe thicknesses. For
example, if a wall pressure of 10 ksi was required to change the projectile's direction in the
spiral track, then it would generate a peak inner surface hoop stress of -6-7 ksi in a 2 in thick
wall. (For reference, 70 ksi is considered a safe hoop-stress level in gun barrel steels.) In the
pressure vessel industry, a simple rule of thumb for gauging wall thickness is (Dorf [7]):
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Applied Normal Pressure (psi) x Inside Cylinder Radius (in)
Wall Thickness (in) AllowableStress (psi) - 0.6x Applied Normal Pressure (psi) (16)
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0 5 10 15 20 25 30 .35 40

Time (s)
FIGURE 10. Projectile-Track Interface Pressure vs. Time, Based Upon the Simulink

Solution of Eq (9) for the Conditions of Eq 15.
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FIGURE 11. Peak Inner Surface Hoop Stress vs. Wall Thickness, for Various Semi-Circular,
Inner-Wall Pressure Loadings, in AISI 4340 Steel Pipe.
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In order to compute the total weight of a Slingatron track, the total track length needs to
be determined. Figure 12 shows the cumulative arc (track) length vs. time for the same
Simulink solution as that of Figs 8-11. At 17 s (-8 km/s) the spiral length is - 43 mi.
Although not shown here, wall pressure vs. track length could also be resolved from the
Simulink solution. Similarly, assuming a pipe-like track design made from steel that can safely
tolerate a hoop stress of 70 ksi, with inner diameter (from A in Eq 15) of 25 in (0.64 m), Eq 16
can be invoked to provide wall thickness vs. arc length. It was thus determined, that 43 mi of
track would weight -17,000,000 lbs, or, 8,500 tons.

250

200

150

100

50

0
0 5 to 15 20 25 30 35 40

Time (s)
FIGURE 12. Track Length vs. Time, Based Upon the Simulink Solution of Eq (9) for the

Conditions of Eq 15.

Upon closer inspection, it was noticed that within the 90 parameter-sets that yielded
successful solutions, variation in 0, and R, did not strongly affect the outcome. To illustrate
this, Fig 17 plots solutions derived from the following subset of Eq 13,

2 rad/s " o = i' ", r = 5.5 m Ro = r+12 m2

a = 0.275xr ; m =1,000 kg ; A = 0.086 m 2  (17)

0-=- - - ra r"r7

8l'10' rad1 00 - - rad

00 = 0 rad

As indicated, these three cases differ from each other only by the initial phase angle 00.
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FIGURE 13. Speed and Phase Angle vs. Time, Based Upon the Simulink Solution of Eqs (9) and (17).

As can be seen from Fig 13, variation in the phase angle dampens out, as did its effect
on the solution for the projectile's speed. Likewise, though not plotted here, variation in phase
angle did not produce significant changes in the total track length, nor did it noticeably affect
the plot of wall pressure vs. time. A similar result was found to hold for variation in R,, viz.,
significant changes in the initial spiral radius produced insignificant change, over time, in the
projectile speed, track length, and wall pressure.

In summary, of the 243 parameter-sets specified in Eq 13, only 90 yielded a solution
that produced a projectile speed of 8 km/s (or more). Of these 90, there was a subset of 10 that
yielded notably different values for the track length and wall pressure; for each of these 10,
there were 9 variations in 0o or R, that only slightly perturbed the length and pressure profiles.

In addition to track length and wall pressure, another factor that must be considered in
evaluating a practical slingatron design would be the speed at which the spiral track gyrates.
For instance, the higher the frame speed, the more energy is expended doing work against air
resistance/drag. Furthermore, the higher the structural speed, the higher the loads on moving
parts (e.g., bearings) and the more wear and maintenance that can be expected. Figure 14 plots
the frame speed vs. wall pressure and track length for the 90 successful launch solutions of
Eq 9. The inset plot shows the 10 most unique solutions, demonstrating that variation in 0, and
R, is not needed to capture the gross range of solutions.

The most desirable solution is the one that has a low track speed, low wall pressure,
and short track length; not surprisingly, concurrent minimums in these three parameters
appears unachievable. Thus, a compromise has to be made, two of the three desirable traits
must be favored at the expense of the third, or, less than minimum values must be accepted for
all three factors. For example, from Fig 14, if a maximum wall pressure at projectile exit of
6 ksi could be tolerated, then a minimum spiral length of 43 mi, gyrating at a minimum circular
speed of 95 m/s could be achieved. On the other hand, if the maximum wall pressure was set

486



at 5 ksi, it would necessitate a minimal spiral length of 66 mi with a frame speed of 78 m/s.
Also shown in Fig 14 are three solutions where the pressure is 5 ksi and the frame speed is
78 m/s, but the track lengths are vastly different, at 66 mi, 80 mi, and 102 mi, respectively.
Although these three designs accomplish the same effect (viz., launching the projectile at
8 km/s), the difference in their costs (one being 40% shorter than the other) would be
tremendous; thus proving the potential benefit of this type of parametric analysis.

Same Plot Using 10 Surtac Pressure
(Most Unique) Solutions (ksi)

Plot Based on 90 Solutions Thal
K Yielded a l.aunch Speed of18 km/s

C1
(n

4 B

ne Ar S .n

(M/ (m las

Three Soluons With the. 7

Same Speed and Pressure
61 ~~But Differe'l Arc Lengths 1
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U)' 5- BO" 55]

U..../,-") 4 5

000 14,

>S --

4110 4.." " I7

40 120 19 CI 0 60 40 40 00 60 190 120 140

Spiral Arc Length (miles) Spiral Arc Length (miles)

FIGURE 14. Wall Pressure vs. Spiral Speed vs. Spiral Track Length, Based Upon Es (9) and (13).

The relatively small range of parameters specified in Eq 13 has been used to
demonstrate (via Figs 8-14) the methodology by which Simulink can be utilized to search for
favorable solutions to the problem of a slingatron-based earth-to-space projectile launch, from
an engineering-practical vantage point. Although Fig 14 shows a solution surface, the range of
parameters upon which it was derived, viz., Eq 13 (with its 243 possibilities), is not all-
inclusive. Are there other parameter sets that might produce even better (easier to produce and
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maintain) solutions/designs? To answer this question, a broader range of parameters needs to
be examined. In order to explore the widest possible range of solutions with the minimum
computer time and resources, it is sensible to distribute the collection of parameters in
accordance with their degree of influence on the solution. As indicated by the likeness of the
10-solution subset to the full 90-solution assembly in Fig 14, variation in the parameters 0o and
Ro does not produce significantly different results. Therefore, it makes sense to narrow the
range of these two parameters and widen the range for the remaining three, viz., the gyration
speed parameter, VY, the gyration radius, r, and the parameter governing the tightness of the

spiral, a. Accordingly, the 18,375 parameter-sets of Eq 18 were examined and (as will be
shown) found to yield a range of solutions that liberally bound the region of practical interest.

= (2n 1 -1)rad/s; for n1 = 1:35 Ro r+4 m
2

r=n 2 -0.5m; for n 2 = 1:35 o=
a = (n 3 -0.5)xO.05xr m; for n 3 = 1:15 m = 1,000 kg (18)

Vo 7rr adi2L0 00 = rad A 0.086 m2

00 0 radJ 40

Out of the 18,375 different combinations of parameters, there were 16,178 successful
solutions (of Eq 13 for 0[t]) that yielded a projectile speed (Eq 14) of at least 8 km/s. Fig 15 is
the counterpart of Fig 14, displaying all 16,178 solutions.

Clearly, a structural speed that is greater than the speed of sound (-335 m/s) is
impractical, neglecting these cases would eliminate the majority of the solutions indicated in
Fig 15. A more reasonable speed might be several hundred meters per second slower.
Searching the solution set, Fig 16 shows a subset plot of 600 solutions where the structural
speed of the track was < 140 m/s and the track length is < -100 mi.

,: 4545- 4

40 'A
35

A :" • :- 30 M

0. 20- 20 Spiral Speed (m/s)

0'5

4000 3000 1 10000 - " .- q 200

Spiral Speed Spiral Arc Length .n01e5
(m/s) (miles)

Spiral Arc Length (miles)

FIGURE 15. Wall Pressure vs. Spiral Speed vs. Spiral Track Length, Based Upon Eqs (9) and (18).
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FIGURE 16. Wall Pressure vs. Spiral Speed vs. Spiral Track Length, Based Upon Eqs (9) and (18).

At the upper speed end in this subset is a solution (nh = 2, n2 = 30, n3 = 13) where the
structure is moving at 139 m/s (313 mph), the peak wall pressure is below 2 ksi, and the track
length is a, relatively, moderate 54 mi. Based on the same approach used to determine the
8,500-ton track weight in the previous (95-m/s, 6-ksi, 43-mi) example, this designated-upper-
speed-limit, 54-mi track would weigh a relatively low 2,700 tons.

At the low speed end, a solution exists (n, = 34, n2 = 1, n3 = 2) where the track motion
is slowed down to 53 m/s; the track length remains in the middle ground at 48 mi, but the wall
pressure peaks at 37 ksi. The estimated weight of this lower-speed-limit track is high, at
107,000 tons.

A more all-around-moderate solution (ni = 7, n2 = 4, n3 = 6) would have the track
moving at 72 m/s, with a wall pressure of 7 ksi, and a track length, again in the mid-range, at
50 mi. The estimated weight of this track would be 12,200 tons.

Perhaps the best solution compromise for structural speed, peak wall pressure, length,
and weight is one (n, = 10, n2 = 3, n3 = 7) that produces mid-range values for the frame speed,
at 75 m/s (170 mph), wall pressure, at 11 ksi, weight, at 10,500 tons, and a low-end track
length of 28 mi. (For reference, this slingatron would be the weight-motion equivalent of two
fully-loaded medium-sized river barges, each circling at -5 hz around an -8 ft radius.)

Although the evidence is anecdotal, the values for n1, n2, and n3 in the four practical-
solution examples described above and tabulated below (spanning the high, moderate, and low
frame speed regimes) illustrate that the range of n, and n2, from 1-35, and n3, from 1-15, was
broad enough to capture the majority, if not all, of the most practical slingatron designs.

SUMMARY

This report provides a physical explanation of the mechanism by which the mechanical
device, referred to as a slingatron, akin to a hoola-hoop, can be used to launch a projectile into
space. Furthermore, using the software program called Simulink (a complementary program to
Matlab) the non-linear differential equation of motion for a spiral slingatron design was solved
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for a large range of input parameters. These solutions were sorted based upon whether or not
the slingatron design could accelerate a 1000-kg, 0.64-m diameter projectile to at least 8 km/s
(assumed to be a sufficient speed to place such a payload into space). Finally, the most
physically reasonably of these successful solutions were down-selected. A case in point, it was
found that a spiral track 28 mi long weighting 10,500 tons having a structural speed of
-170 mph could be used to launch such a projectile into space.

With the type of information provided in this study (viz., structural speed, wall
pressure, and track length), a more detailed track-design analysis could begin, leading to,
among other things, a total-dollar (or per-payload-pound) cost estimate for a slingatron-based
earth-to-space launch system.

Table 1. Examples of the "Most Practical/Optimum" Slingatron Track Designs

Structural Wall Track Weight

Minimum Speed Pressure Length (U.S. tons)
ValuesF (m/s) (ksi) (miles)

A 139 54 2

B ýJ 37 48 107,000
Titan IV Rocket

C 72 1 7 50 12,200 -340-380 tons
D 75 11 28 z '•"": • 10,500 !

500-ft Fully Loaded Large Steel River Bridge-10,000 tons

Cargo Ship-8,000 tons

_______ International Space
Station -520 tons

Golden Gate
1000-ft Fully Loaded .. Bay Bridge
Aircraft Carrier -- 200,000 tons
- 80-100,000 tons
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