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ABSTRACT

Magnetoresistance of the nanocomposite Fe (SiO,),« (x=0.6) at high enough magnetic
field is logarithmic function of the magnetic field. Such a dependence does not fall into the
known theory of giant magnetoresistance of ferromagnetic nanocomposites. This paper
examines the giant magnetoresistance of such a system in terms of a simple model where the
non-ordinary  quasi-logarithmic  magnetic  field dependence of nanocomposite
magnetoresistance is related to the non-spherical granules’ distribution over their shapes.

INTRODUCTION

In the present paper, we consider the giant magnetoresistance of the nanocomposite
Fe,(Si0,)1« which is the granular ferromagnetic metal in the insulator matrix with x=0.6 (that
corresponds to the metal state close to the percolation metal-insulator transition). Experiments
show that at high enough magnetic fields, the resistance of the system depends logarithmically
on the magnetic field. Such a dependence does not fall into the framework of the known
theory of the giant magnetoresistance of ferromagnetic nanocomposites [1, 2]. We relate this
discrepancy to the fact that the “traditional” theory is applied to systems with spherical
granules, while real nanocomposites consist most commonly of non-spherical ones. Moreover,
as a rule, there are granules of diverse non-sphericity in the system - from the strongly prolate
to the strongly oblate ones. This paper examines the giant magnetoresistance of such a system
in terms of a simple model where the non-ordinary semilogarithmic magnetic field
dependence of nanocomposite magnetoresistance is related to the non-spherical granules’
distribution over their shapes.

EXPERIMENT

Thin Fe,(Si0»),.« - films with x=0.6 were studied. They have been prepared by the ion-beam
sputtering technique in a vacuum chamber with a mosaic target consisting of Fe and SiO;
tablets. The volume fraction x of iron has been controlled by X-ray micro-analysis. Grains’
diameters vary from ~2 nm up to ~ 20 nm and the film thickness equals about 0.4 pm.

The magnetoresistance AR/R of the film (R is the sample resistance at a given temperature
and zero magnetic field, 4R is the resistance change at the magnetic field B) was measured
within the 4.2-300 K temperature range under the action of the “long” (of ~0.1 s-duration)
pulse magnetic fields up to 20 T,

Experimental field dependencies of the sample manetoresistance for various
temperatures are shown in Fig. 1. In fig. 2, only those parts of those dependencies are
demonstrated that relate to the high field region. In this case, the magnetoresistance is shown
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as a function of the “effective” field B/T '. It could be seen that in the high field region the
magnetoresistance is the logarithmic function of the magnetic field.
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THEORY: NANOCOMPOSITE WITH NON-SPHERICAL GRANULES

The conductivity of granular metals (nanocomposites) and (in the case of ferromagne-
tic metals) their giant magnetoresistance are defined by tunnel intergranular electron
transitions [1, 2]. However, in real systems consisting of granules of various sizes, not every

! It is known that for non-interacting spherical granules the magnetoresistance AR/R o= M %, where M is the
nanocomposite magnetization |2]. In the case, the latter is defined by the Langevin tunction (cf. Eq.(4) ) which
argument is the effective ficld B/T.
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those transitions are actual: the most considerable contribution to the conductivity is due to
tunnel transitions between granules of sizes close to the “optimal” one {3, 4]. For a
nanocomposite consisting of spherical granules, such an optimal size is defined by the
competition between enhanced concentration of small granules (that is typical for real
systems) and reduced degree of their ionization which is the consequence of Coulomb effects.
So, it is the result of the “game of survival” — there is great deal of small granules but only a
few of them are charged (and therefore could contribute to the conductivity) and there is a few
of big granules which all are charged. The optimal granule size is expressed by the relation [3]

0, (T) = ay(x/4m)" (4] a, )T I T,y o

where #Ty = (e/e aoX a2 -0/, a is the average granule size, A is the electron
wavelength in insulator phase, ¢ is its dielectric constant, x is the volume fraction of the metal
phase, and . is the percolation threshold. So, the conductance G(T) of the system is controlled
by the “optimal cluster” consisting of particles of the optimal size a.,(T) which is rearranged
with temperature.

The resistance variation of the considered system under magnetic field B is defined by
the magnetic field dependence of the probability of tunnel transitions between spontaneously
magnetized single-domain (due to small sizes) granules. The reduced magnetoresistance
MR(B, T) = [G(0,7)-G(B,1)1/G(0,T) equals [4]

AR(B.T)/R = P2 (cos y)? @
where P is the electron spin polarization in the ferromagnetic granule, ¥ are angles between
the external magnetic field and magnetic moments of granules. Averaging is performed over
the granules constituting the optimal cluster. Thus, the calculation of the magnetoresistance is
reduced to the calculation of the averaged (over that cluster) <cos 7> - value.

However, in the real system, granules are, generally, non-spherical. It means that not
every values of y- angle for a single granule are equally probable and the averaged (over time)
m - value for a non-spherical granule is defined by its magnetic anisotropy (crystal or
geometric) and the external field [5]. For an ellipsoidal granule with a high (comparing to
Bohr magneton) magnetic moment,

cosy = [exp[-(W, +W,,)/KT |cos ydQ / Jexp[-w, +W,)/kT]dQ, 3)
o o

where d(2 = siny dyd¢ is the solid angle, ¢is the azimuth angle of granule’ magnetic moment
(cosg=[cos@- cospcosfl/sinwing, 6 and fare the angles between the large axis of a granule
and directions of its magnetic moment and magnetic field, respectively). In Eq. (3) Wx= W(6)
is the magnetic anisotropy energy independent of the magnetic field, Wz = ~L,VB cosyis the
Zeeman energy depending on the y- angle only, /; is the saturation magnetization of granule’
material. At high magnetic fields, Wp >> W, and, hence,
cosy = cth h-1/h=L(h), o))

where = VB [ kT . That corresponds to the known Langevin model.

If the optimal cluster consisted of spherical granules of the size aqp , then the granule
volume V appearing in Eq. (4) would be the same for all granules and equal to V=V p,=(47/3)
& op(T) o< T %, In this case, (cos ¥) = cos ¥ = L{hop), where hop= 1BV oy kT o« T 7 1t is clear
that even in this case the temperature dependence of the optimal cluster magnetic moment
(which is proportional to <cos>) is not described by the Langevin model (where & o< 1/T).
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In the system consisting of non-spherical (ellipsoidal) granules, the situation is more
complicate. In that case, the probability of granules’ ionization is defined by their capacity C
(which in the spherical case coincides with the granule radius). Therefore, the optimal granule
size is the result of the new “game of survival” which depends on 1) the relation between the
charged granules’ concentration and their capacity, and 2) the dependence of the average
(tunncl) distance between granules with equal capacities and their characteristic size. A
granule which form is an ellipsoid of revolution has the two characteristic sizes a, b that are
the lengths of its long and short axes. Which of those sizes is the characteristic one for the
problem considered? It is known that the capacity of the ellipsoidal granule with the larger
size of a depends slightly on its smaller size b: for the prolate ellipsoid of revolution C=(a*-
bl)”2 JArch(a/b) = a/ln(2a/h), while for the oblate one C :(az—bz)” 2 /arccos(a/b) (i.e.,
2/n<Cla<1) [6]. It means that the only essential size of an ellipsoidal granule is its larger size,
and all granules with the larger size a close to aqy are the optimal ones. Therefore, the optimal
cluster consists of granules of various volumes in the range Vi, < V < Vo, where Vo= (4n
3o and Viin = (Buin/@op) Vepe (for prolate ellipsoids) or Vain = (Pmin/@op)Vop (for oblate
ellipsoids), hinfdop is the minimum ratio of the respective granule’ sizes which characterizes
their maximum (for a given nanocomposite) elongation or flatness. If. hyin/dop ~ 0.1, then the
optimal cluster includes granules which volumes differ by ~100 times! Naturally, in this case,
{cosy)# Ez)s—yand one should perform averaging over all granules of the optimal cluster. Let
Jo(h) be the distribution function of the smaller sizes of the granules, and x, is the volume
fraction of the prolate granules. Then

b=,y

Cospy=" [ {a-x)L{(@b* 1 h, |+ x,L[(@blal ) h, |}, (B)db=F(h,,),
b=hyin

1

Flhy)= [ [(=x)Lthy 2"+ 5, Lk 2) | f(2)dz, )
where we introduced the distribution function f.(z) of the parameter z=b/a,, (0<z<I,
Zminzhmin/anpl)-

The distribution function f:(z) is, most likely, dependent on the technique of
nanocomposite producing. This refers equally to the relation between numbers of prolate and
oblate granules that is defined by the parameter x,. In principle, the relevant information may
be obtained by means of electron-microscopic investigations of the system in question. But, as
calculations show (sec below), the qualitative form of the magnetic field dependence of the
magnctoresistance is not critical neither to choosing the distribution function f.(z), nor to
values of the parameters z,;,<<1 and x,. So, as a simple approximation one could consider the
system with the uniform distribution function {(f.(z)=const) consisting of prolate granules only
(x,=0), that is the system where prolate ellipsoidal granules of any form, from the spherical

z=1) to ncedle-like (z=0), arc equally probable. In calculations, z,, =0.1 was accepted.

Magnetic field dependence of the magnetoresistance of such a system calculated with
Eq. (5) is presented in Fig. 3 (the solid line 2). It could be seen that within the broad range of
magnetic fields (in this case, at 5<h,,<50), the field dependence of the magnetoresistance is
nearly logarithmic one. As calculations show (sce Fig. 3) the character of that dependence is
qualitatively the same for various functions f.(z) and x,-values. What changes, it is the range
of magnetic fields where that dependence is quasi-logarithmic one.
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Characteristic effective field for the magnetic field range, where quasi-logarithmic
dependence of the magnetoresistance should be observed, is of about A,,~20 (cf. Fig. 3, the
solid line 2 for the uniform distribution function f.(z) ). Comparing this value with the value of
B/T~3-107 T/K, corresponding to the experimentally determined ranges of the
magnetoresistance logarithmic dependence at temperatures 7~100-250 K (cf. Fig. 2), the
diameter of the optimal granules 2a.,~20 nm could be derived (in doing so, the saturation
magnetization of Fe-granules was considered as being equal to that for the bulk iron, /=0.2
T). It is in a reasonable agreement with the data of electron-microscopic analysis of the
investigated nanocomposite.”

Let us discuss now the magnetoresistance temperature dependence in the range of its
logarithmic magnetic field dependence. In the framework of the considered model, there is the
only reason for such a dependence - the variation of the larger granule size a of the optimal
cluster with temperature. That dependence occurs to be the same as Eq.(1), auu(T) < T R ]
means that the magnetoresistance depends only on that parameters’ combination which
defines the value of Ay o< BV /T o< B/TX/ ?, Therefore, in the framework of our model there is
a parametric magnetoresistance dependence which has the following form MR=MR(B/T**). In
other words, every value of the reduced magnetization AR/R as a function of the parameter
B/T*” has to fall on a single master curve. Experimental data presented in the respective form
(cf. Fig. 4) support that theoretical prediction. Thus, the considered model provides
qualitatively correct description of the experimental results concerning the magnetoresistance
of the granular ferromagnetic metal Fe,(SiO2),.« under high magnetic fields.

In conclusion, we have shown that the model of the nanocomposite with granules of
various non-spherical forms leads to the quasi-logarithmic magnetic field dependence the
magnetoresistance of such a system under high enough fields. This is, obviously, associated

2 According to Eq. (1), ac(T)e<T 2 and, hence, the calculated optimal granule size at 7=4.2 K equals
2a,(4.2 K) ~ 100 nm. However, there are no such big granules in the real system and, hence, it is incorrect
to employ the considered model at so low temperatures.
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with the great volume scattering of granules constituting the optimal cluster. The
magnetoresistance saturates together with the magnetization of this cluster, but with
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increasing field more and more small granules become contribute to the magnetization. It is
this “extended” contribution that results in quite slow (quasi-logarithmic, as has been shown)
saturation of the magnetization and, hence, of the magnetoresistance, as well.
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