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High-order Nystr6m Method for
Computing Waveguide Modes

John J. Ottusch and Stephen M. Wandzura

HRL Laboratories, LLC
3011 Malibu Canyon Road

Malibu, CA 90265
ottusch@hrl.com

Abstract-We report a novel method for accurately corn- The modes of an isotropic, homogeneous-core cylin-
puting the modes of an arbitrarily-shaped hollow wave- drical waveguide with perfectly conducting walls can be
guide. Our method uses a point-based (Nystrbm) dis- classifie
cretization of an integral operator over the waveguide d [2] into three categories - transverse magnetic
aperture to compute the modes. (TM), transverse electric (TE), and transverse electro-

magnetic (TEM). Modes in each category are related to

I. INTRODUCTION the modes of a scalar waveguide problem. The TM (TE)
modes are derivable from the scalar modes of the same

This paper describes a technique for numerically com- waveguide assuming Dirichlet (Neumann) boundary con-
puting the modes of an arbitrarily-shaped cylindri- ditions on its walls. The TEM modes are derivable from
cal waveguide with perfectly-conducting walls and an solutions to the 2d Laplace equation on a cross section of
isotropic, homogeneous core. The method is different the guide.
from standard methods in that we formulate the prob- The arrangement of the remainder of the paper is as
lem in terms of the eigenfunctions of an integral operator follows: section II describes how to obtain eigenmodes
over the waveguide aperture and it is unique in that we and eigenvalues for the scalar waveguide problem with
employ a high-order, point-based (Nystr6m) discretiza- Dirichlet or Neumann boundary conditions; section III
tion to obtain numerical solutions. describes how to solve the 2d Laplace equation inside the

The Nystrdm method is a method for solving inte- waveguide aperture; section IV describes a method for
gral equations. In contrast to a method of moments dis- computing the vector waveguide modes from the scalar
cretization, a Nystr5m discretization of a function on a traveling modes and 2d electrostatic modes; and, finally,
surface S is simply a tabulation of function values at a in section V we present some results obtained from a soft-
discrete set of points on S. Integrals are approximated ware implementation of these methods.
by weighted sums of function evaluations. Specifically,
we approximate the integral of a function f (x) as II. SCALAR WAVEGUIDE MODES

The scalar waveguide modes u, (x) satisfy the 2d scalar
Ndx f ( (xi N wave equation

wi(x) f=
(v1+ k _ p2 ) = 0 (2)

where xi is the irh abscissa of an N-point, high-order inside the waveguide aperture W and the correct bound-

quadrature rule and wi is the associated quadrature ary conditions on its boundary OW. They are also eigen-

weight. functions of the H operator [3] defined as

The conventional Nystr~m method is a simple and ef- -
ficient method for solving integral equations with non- H (x, x') -- u ((
singular kernels. When the integral kernel is singular n

(as is generally the case for Green functions), one needs In these equations,
to introduce local corrections in order to compensate for k

the fact that a quadrature rule for regular functions can- Zn = - (4)
not integrate singular functions with high-order accuracy.

Further details regarding local corrections and their use is the modal impedance, k is the free-space propagation
in the Nystr6m method for solving scattering problems constant, and /3 is the propagation constant for the nth

may be found in [1]. waveguide mode.

1054-4887 © 2002 ACES
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Using the fact that the modes form a complete and obeys
orthonormal set of real functions on W, one can show
that the function G defined by (V_ + k 2 ) F (x, x')

/w-fd1" (V2 + k 2)aG(x, x") 0r(x", x')=O0 (11)
& (x, x") J ds' H (x, x') H (x', x"), (5) d

is the Green function appropriate to the inside of since (V2 + k2) G (x, x") = 0 for all x E W and x" E r.
the waveguide because it obeys the wave equation Taking the limit as F --+ 8W we get
(V2 + k2 ) d (x, x") = -6(2) (x, x") inside W and the
correct boundary conditions on 8W. Furthermore, the G (x, x') = G (x, x') + / dl" G (x, x") a (x", x').
eigenfunctions of the integral operator Jaw (12)

d( Un ds' u (x') A simple interpretation of this equation is as follows:
(6) 'a (x" e OW, x' E W) is the charge distribution induced
(6) on the walls of the waveguide by a unit charge at x' E W;

are the modes of the waveguide and the eigenvalue cor- the total potential at x E 8W is the sum of the potential
responding to the nth mode un (x) is from the original unit charge, namely G (x, x'), and the

/ 2 potential produced by the induced charge distribution on

(j--l--..± (7) the waveguide walls, namely

Therefore, our procedure for computing the scalar trav- f dl" G (x, x") a (x", x'). (13)
eling modes of a waveguide will consist of first comput- J8w

ing a discretized representation of the integral opera- In the Dirichlet case, the total potential must vanish
tor fw ds" G (x, x") and then using a numerical eigen- everywhere on OW. To enforce this condition, we will
value routine to determine discretized representations (of demand that the inner product of the potential on OW
a finite set) of the modes and the corresponding prop- with each function fk (x E 8W) from a suitable set of
agation constants. The remainder of this sections de- testing functions must vanish, i.e.,
scribes a method for obtaining discretized representations
of fw ds" G (x, x") with Dirichlet or Neumann boundary 0 = dl fk (x) G (x, x')
conditions on OW. oW

Start with a solution to the inhomogeneous (trans- a dl f dl" G (x, x") (x", x') (14)
verse) wave equation (V_ + k 2 ')g e s = -6(2) (X, X+). d

We will use
1 for every point x' E W.

G (x, x' 4Yo (k Ix - x'I), (8) We can write this condition in matrix form as

where Yo is the second kind Bessel function of order zero. 0 = fawpaw (GawW + GaWW•2aWE8W W) (15)
To this solution we can always add solutions F (x, x') to
the homogeneous wave equation (V2 + k2) F (x, x') = 0. where EaWW represents the discretized form of oa and
Our objective is to find a solution F that makes Gawaw and Gaww are discretized representations of

the kernel G with local corrections [1]. Q2°W is a diagonal
G (x, x') = G (x, x') + F (x, x') (9) matrix of quadrature weights for integrals over 8W. [In

obey the boundary conditions on OW. Unlike the Green general, our notation involving W and 8W superscripts
function for 2d scattering in an unbounded region, this is meant to indicate the domain(s) of the coordinate vari-

Green function is real valued, able(s). For diagonal quadrature weight matrices Q, only
one superscript is used for notational compactness with

A. Dirichlet Case the understanding that the two domains are always the

Since we care only about G inside W, we can arrange same.] Since faw is arbitrary, the solution to (15) is
any distribution of charges a outside of W to make G EOWW (GW'°W w)-l Gaw'w, (16)
obey the boundary conditions on OW. The simplest so- =

lution is to put them on an artificial boundary F that is
outside OW by an infinitesimal distance. Then which means that the discretized form of fs ds" G (x, x")

isFP (x, x') j-] dl" G (x, x") a (x", x') (10) Gw, w~w - GW,aOW (G8W,8y GaW)-l. 17
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B. Neumann Case derivative operators with local corrections. Qw and WoW

As in the Dirichlet case, we arrange sources on F in are diagonal matrices of quadrature weights for integrals
just the right amount to make the total potential obey over W and OW, respectively. The solution to (21) is

the boundary conditions on 8W. In the Neumann case, MaW,w
however, a dipole distribution p has some advantages over -1
a charge distribution'. = - ([(i&. V) (i". V" G)]8 W'W a ww ) ('6. VG)W'W,

The potential at any point x EW due to a dipole dis- (22)
tribution / on F is

which means that the discretized form of fw ds" G (x, x")
F (x, x') = Jr dl" (V" V"G (x, x")) p (x", x'), (18) in the Neumann case is

,// G W W •2 W - ( '6 . V G )o w ~ w
where 6" is the unit normal to OW at x" in the plane of, -1

but pointing away from, W. For the same reason as be- ([(' . V) (v". V"1G)]8w'w) (6. VG)aW'w QW. (23)
fore, F obeys the homogeneous wave equation whenever
x CW. The edge normal derivative of F at x EF is III. SOLVING LAPLACE'S EQUATION IN W

When the waveguide aperture is multiply-connected,
6. VF (x, x') =(. I) dl" (i" V"G (x, x")) y (x", x'). there exist non-trivial solutions to the 2d Laplace equa-

(19) tion in W. Such solutions correspond to the TEM modes
in the waveguide.

The normal derivative of a dipole layer potential is con- What follows is a procedure for computing the solution
tinuous across the boundary so we can take the limit to the 2d Laplace equation in W for an arbitrary potential
F - 8W, replacing F by 8W in the above expression. distribution on the boundaries. The same procedure has

In the Neumann case, the edge normal derivative of an obvious extension to 3d which could be used to solve
the total potential must vanish everywhere on OW. We electrostatic problems inside multiply-connected cavities.
will demand that the inner product of the edge normal For a given boundary value function b (x EOW), we
derivative of the potential on 8W with each function from desire to find a function ¢b (x EW) that satisfies
a suitable set of testing functions must vanish. In other 0 (x) = b (x) for x cOW, and (24)
words, for each testing function fk (x E 8W), we require V 2

that V2 (x) = 0 for x EW. (25)

=f The solution for 0 (x) can be written as a 2d single-layer

0= wdl fk (x) (6. VG (x, x')) + potential with an unknown source distribution

fo, dl fk (x)(" V) jw dl" (".V"G (x, x")) p (x", x') (x) = jaw dl' log lx - x' a (x'). (26)
(20) This potential automatically satisfies the second condi-

for every point x' E W. tion above because V 2 log Ix - x'l = 0 for x EW and
We can write this in matrix form as xIEOW. The single-layer potential density a (x') is deter-

mined by the condition that 0 (x) = b (x) on the bound-
0= fow ow(( vG)9W, W + ary, i.e.,

[(i. V) ('". V"G)]aw'W QawMaW'W) (21) fa dl' log Ix - x'I a (x') = b (x). (27)

where Maw,W represents the discretized form of y, If LOW,8w and Lwaw are the discretized representa-
and [(,a. V) (&"- V"G)]'°W and (-& VG)aW'w are dis- tions of log Ix - x'j (with local corrections) for x E 8Wcretized representations of the corresponding edge normal and x E W, respectively, and Tw, Eow, and Bow are

'The problem with using a charge distribution in the Neumann the discretized representations of 0 (x), a, (x) and b (x),
case is that it diverges at acute angle corners, such as in a square respectively, then
waveguide. A ld quadrature rule designed to integrate regular func-
tions will not be high order for such a charge distribution. For wave- Lawoaw~awEaw = Baw, (28)
guide apertures with smooth edges, such as a circular guide, this
is not a problem and using a charge distribution may well better and the solution for Iw becomes
since the integral operator is second kind.

When using a charge distribution o for the Neumann case, beware ,TW = LW,aW QOWOW = Lwaw (Lawaw) Bow.
of the fact that the limit of fr dl" (i . VG (x, x")) a (x", x') as

r - OW is !a (x, x') + flw dl" (ýi. VG (x, x")) a (x", x'). (29)

2
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To get TEM modes, W must be multiply connected, solution to the linear system

eW WUW 2 ... UW, (30) E A (xi, xj) k (Xj) - dfk (xi) (38)
. dx

where the OWj are unconnected boundaries and n > 2. for suitable testing functions fk (x).
There is a TEM mode corresponding to each of the n - 1 We can also make a connection with the Nystrbm
independent boundary functions described by method by re-expressing the derivative as an integral op-

erator and applying the standard procedure [1] for com-
bik (x) = 0 for all k except k = i (31) puting local corrections. If we write the linear derivative

bi (x) = (32) off(x) on the curveCas

fori=1,2,... ,n-1 df(x) = d [ dx' 6d(x -~~x-x)f/(x'), (39)dx dx C
IV. VECTOR WAVEGUIDE MODES then the discretized representation of the differential op-

The transverse electric components of the TM, TE, erator d on C is obtained by solving the linear system
and TEM vector waveguide modes are derivable from the

scalar waveguide modes according to 5w a (xi, xj) fk (xj)
TM V1 n

U (X = -__ (33) d [ dx' 6 (x - x') fk (x') dx (40)

UTE (X)=n- X (34)n V -k2  (31 for A (xixj) using suitable testing functions fk (x).

U TE (x) OC V~ n, (35) Clearly, A and A are related by AQ = A. The only
difference between this linear system and the local cor-

where V, On, and C, are the scalar Dirichlet, Neumann, rection linear system in [1] is that computing the right
and Laplace modes, respectively. The transverse mag- hand side of (40) only requires evaluating derivatives of
netic component [2] is the testing functions at the sample points instead of eval-

uating inner products of the kernel with testing functions.
H1 = =Z,-'fi x E±, (36) We have encountered operators similar to this in scat-

tering problems before. The hypersingular operators
where (n. V) fds' (n'.V') G (x, x') and (nx V) fds' (n'Xv)

Zn for n c TM modes G (x, x'), which appear in boundary integral formulations
f Tof scalar and electromagnetic scattering, respectively, are

k for n E TEM modes (37) pseudo-differential operators. Like these operators, the
Sfor n TE modes discretized gradient operator must be used with extreme

caution (and avoided whenever possible) because it tends
is the modal impedance and E and IL are the dielectric to

to amplify rather than attenuate numerical "noise".
constant and magnetic permeability, respectively. Now consider surface derivative operators. Let tl (x)

We need discretized representations of the surface gra- and t 2 (x) be independent unit tangent vectors on the
dient to effect the transformation from scalar modes to surface S. By analogy with the linear derivative opera-
vector modes given above. This section shows how to tor, we obtain a locally corrected matrix representation
represent the surface gradient operator (on an arbitrary A , (xi, xj) of the surface gradient operator t. • V on S
surface) in matrix form. Left multiplying a matrix repre- by solving the linear system
senting a scalar surface function by the matrix represent-
ing the surface gradient produces a discretized represen- 5 A,. (Xi, Xj ) fk (Xj) it. (Xi) . Vfk (Xi) (41)
tation of the surface gradient of the scalar function.

First consider the linear derivative operator. In the
spirit of the high-order Nystr6m method, we will de- with It = 1, 2 using suitable testing functions fk (x). If
mand that the discretized derivative operator return ex- these testing functions afford a high-order approximation
act results at a particular set of sample points for each to a scalar function V) (x) on S, then the vector A,.f'
function in a set of suitable functions. In other words, represents a high-order approximation to t, (x) . VO (x),
if we are given a set of points xj on a curve C, then with (A) ij =_ AA (xi,xj) and Tii = p (xi).
Aij = A (xi, xj) is a high-order discretized representa- The matrix representation of fi x V is obtained by re-
tion of the differential operator J at xi on C if it is the placing t', (xi) . V with t,. (xi) . (fi x V) in (41).
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TABLE I TABLE II
COMPUTED AND EXACT EIGENVALUES (f

3
r,n/k) FOR A 1.1A X COMPUTED AND EXACT EIGENVALUES (0m,,/k) FOR A 1.1\ X

0.75A WAVEGUIDE SATISFYING DIRICHLET BOUNDARY CONDITIONS 0.75A WAVEGUIDE SATISFYING NEUMANN BOUNDARY CONDITIONS

4 x 4 6 x 6 8 x 8 Exact m n 4 x 4 6 x 6 8 x 8 Exact m n
0.592201 0.590741 0.590716 0.590715 1 1 0.889957 0.890835 0.890726 0.890724 1 0
0.512091i 0.520366i 0.520471i 0.520472i 2 1 0.745280 0.745429 0.745358 0.745356 0 1
0.969128i 0.991772i 0.992159i 0.992164i 1 2 0.587578 0.590805 0.590715 0.590715 1 1
1.219852i 1.159101i 1.142176i 1.141906i 3 1 0.443112 0.412701 0.416826 0.416598 2 0
1.629548i 1.265721i 1.266571i 1.266580i 2 2 0.507053i 0.527063i 0.520106i 0.520472i 2 1
1.997986i 1.574208i 1.624191i 1.623971i 3 2 0.758857i 0.883037i 0.881869i 0.881917i 0 2
2.080501i 1.637739i 1.648007i 1.658382i 4 1 0.919138i 0.922549i 0.925573i 0.927094i 3 0
2.309772i 1.817060i 1.791106i 1.790701i 1 4 0.928154i 0.994163i 0.992079i 0.992164i 1 2
2.546563i 1.929628i 1.956519i 1.956130i 2 4 1.028942i 1.141903i 1.139574i 1.141906i 3 1
2.694088i 1.981966i 2.010146i 2.020783i 4 2 1.288202i 1.271016i 1.266358i 1.266580i 2 2
3.010537i 2.237905i 2.204944i 2.147029i 5 1 1.470524i 1.623864i 1.536828i 1.518482i 4 0
3.114740i 2.385630i 2.279746i 2.204428i 3 3 1.574991i 1.713198i 1.622186i 1.623971i 3 2
3.321089i 2.444649i 2.497769i 2.437841i 5 2 1.606358i 1.739490i 1.681116i 1.658382i 4 1
3.469637i 2.503110i 2.501035i 2.511132i 4 3 1.769745i 1.772999i 1.731271i 1.732051i 0 3
3.642493i 2.696163i 2.537604i 2.513508i 1 4 1.894675i 1.857114i 1.789719i 1.790701i 1 3
3.744043i 2.836216i 2.560426i 2.633924i 2 4 1.932489i 1.955014i 1.956130i 2 3

V. RESULTS Tables I and II list eigenvalues for an a x b rectangu-

We implemented these techniques in software to com- lar waveguide with a = 1.1A and b = 0.75A. For com-

pute the modes of arbitrarily-shaped, closed waveguides. putational purposes the waveguide aperture was defined
Our code requires two inputs. The first is a description by a single rectangular patch. The first column of each

of the waveguide aperture. The aperture is described in table gives the eigenvalues computed using a 16-point,

terms of one or more quadrilateral or triangular patches. high-order quadrature rule, namely a product rule con-

The mesh always covered the planar waveguide aperture structed from two ld Gauss-Legendre rules each using 4

exactly in order to preserve the ability to achieve high- points. The second and third columns give the 16 low-

order convergence in the solution. We locate discretiza- est eigenvalues computed using high-order product rules

tion points on each of these patches according to a high- involving 36 and 64 points, respectively.

order 2d quadrature rule. Discretization points on the The fourth column gives the exact values of the 16 low-

boundary are located according to a ld quadrature rule est eigenvalues. The analytical solutions [2] for a rectan-

of the same order. The number of such points is deter- gular waveguide are well known. The modes satisfying

mined by the second input, the order of the quadrature Dirichlet boundary conditions take the form

rule. This value also determines the maximum order of pomn (x, y) = sin (mirer) sin (n7r k) for m, n = 1, 2,3,...
the testing functions used to compute local corrections. (42)
The output of the code consists of numerically computed
eigenmodes and eigenvalues. Similarly, the Neumann modes are

We have tested the code by using it to compute modes
of several waveguides with simple cross sections. Sample nm (x, y) = cos (m~rx) cos (nmr F) for m, n = 0, 1,2,...
results for two waveguides are presented in this section. (43)
The first is a rectangular waveguide, a problem for which Accordingly, the exact eigenvalues for both Dirichlet and
analytical solutions are available. We compare computed Neumann boundary conditions are
propagation constants (eigenvalues) to analytical results.
The second problem is a rectangular waveguide contain- ýj M 1 2 n (42.
ing two square conductors. Such a waveguide has two (44)
TEM modes in addition to its TM and TE modes. We

list computed propagation constants and plot the low- The last two columns show the values of m and n for each
est modes. Similar results have been obtained on other computed mode. Four Neumann modes and one Dirichlet
waveguide shapes including circular waveguide, circular mode are propagating modes, the rest are evanescent.
coaxial waveguide, and rectangular waveguide with sep- Not surprisingly, the lower the mode, the more accu-
tum. rate the eigenvalue for a given quadrature rule. With a 64



OTTUSCH, WANDZURA: HIGH-ORDER NYSTROM METHOD FOR COMPUTING WAVEGUIDE MODES 89

TABLE III

COMPUTED EICENVALUES (,3/k) vs. DISCRETIZATION FOR A 5A x
3, WVTAVEGUIDE CONTAINING Two INTERIOR CONDUCTORS

First 10 TM modes First 10 TE modes
4x4 6x6 4x4 6x6 6

0.899770 0.898954 0.996147 0.996122
0.889666 0.888867 0.991385 0.991335
0.880594 0.879772 0.986280 0.986221
0.877820 0.877004 0.985071 0.985030 &

0.866849 0.866051 0.968195 0.968162
0.858987 0.858275 0.957283 0.957146
0.824123 0.822946 0.948050 0.947774
0.814496 0.813010 0.946083 0.946051

point quadrature rule, the lowest eigenvalues are accurate
to almost 6 digits. The higher the spatial frequency con-
tent of the mode, however, the lower the accuracy of the

computed result. This is evident in the list of Dirichlet

eigenvalues computed using a 16-point quadrature rule.
It also holds in both cases for the higher modes that were
computed 2 but are not shown in the tables.

The second sample problem is a 3A x 5A rectangular
waveguide containing two 1A x 1A square conductors. Ta- Fig. 1. TEM modes of a 5A x 3A waveguide containing two interior
ble III lists the computed eigenvalues for the first ten conductors.

Dirichlet/TM and Neumann/TE modes of the guide. All
computations were performed using a mesh consisting of VI. CONCLUSIONS

thirteen 1A x 1A patches arranged on a Cartesian grid.
The columns labeled '4 x 4' and '6 x 6' give results for Our method is based on the following observations: the
discretizations derived from 16-point and 36-point prod- scalar traveling modes of a waveguide can be obtained
uct rules, respectively. The accuracy of the results can be by diagonalizing an integral operator whose kernel is the
estimated from the fact that results computed from the Green function for the 2d scalar Helmholtz equation in-
different discretizations agree to better than 2 digits in side the waveguide aperture; the 2d electrostatic modes

the TM case and better than 3 digits in the TE case. As are solutions to the 2d Laplace equation inside the aper-

for the previous problem, however, the accuracy of the ture; and, the electromagnetic modes can be obtained by

propagation constants for the other modes declines with taking gradients of these scalar modes.

increasing mode number. We showed how to construct discretized representa-
tions of the various integral operators using the locallyPlots of the vector modes are given in Figures 1 through corrected Nystrhm method and presented results from a

5. Small arrows indicate the local direction of the (trans- software implementation of this method.

verse component of the) electric field in the aperture. The impr ementarpo n of aras For
background shading represents the corresponding scalar Improvements are possible in a number of areas. For
potential d example, if we were to set up the 2d Laplace problem

using a double-layer potential instead of a single-layer

Figure 1 shows the two TEM modes of the guide. The potential, the resulting integral equation would be sec-
first was derived from the solution to the 2d Laplace equa- ond kind rather than first kind. Second kind integral
tion assuming a unit potential on the left interior con- equations are better conditioned and generally lead to
ductor and zero potential on all other boundaries. The more accurate solutions, especially for high spatial fre-
second plot is essentially its mirror image. The lowest quency modes. If we went one step further and combined
eight TM modes are shown in Figures 2 and 3 and the the double layer potential with a single layer potential
lowest eight TE modes are shown in Figures 4 and 5. (i.e., employ a combined source formulation), the result-

ing equation would be second kind and would also be in-
2
The number of computed modes in this case equals the number sensitive to spurious resonances. Similar considerations

of quadrature points. apply to the integral equations representing the Green
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functions for the scalar traveling modes.

Our original objective was to compute an accurate, dis-
cretized representation of the waveguide integral equa-
tion3 in order to model waveguide apertures and excita-
tions in general antenna and scattering problems. This
requires accurate representations of the electromagnetic
modes on the aperture. The results as presented here are
not sufficiently accurate for this purpose. Consequently,
this paper should be regarded as a report on a work in
progress.

We are grateful for support from the Raytheon Com-
pany.
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