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Abstract - The accurate and fast evaluation of surface reaction integrals for Method of Moments computations is
presented. Starting at the classification of the integrals into regular and weakly, strongly and nearly singular
integrals, appropriate methods are presented that handle each. A Gauss-Legendre quadrature rule evaluates regular
integrals. For singular integrals, the singularity is lifted or weakened by an extraction of the singularity, a transform
to polar coordinates or a domain transform. The resulting regular integral is in turn solved by a quadrature rule. The
different methods are finally applied to an example, and the resulting accuracy tested against the analytical result. The
presented methods are general enough to be used as integration methods for integrands with various degrees of
singularity and is not limited to Method of Moments.

1. INTRODUCTION comparison of the methods closes the presentation.

The solution of integro-differential equations by the Method 2. KERNEL CLASSIFICATION
of Moments is directly influenced by the accuracy of the
matrix elements corresponding to the reaction integrals. The reaction integrals within a Method of Moments
Efficient and accurate methods for the evaluation of the computation involve the integration of the Green's functions
reaction integrals are hence necessary. The numerical teirh functions and
methods must fulfill two major requirements. First, the testing functions [PM73].
method should converge quickly to ensure a low The free-space Green's function with a source point at r'
computation time. Second, the evaluation should be accurate G(T,i') = e- "'/(4;rri - i'l) and its derivative VG(i,F')
in order to obtain a good overall accuracy. --V'G(i,i') determine the behavior of the kernels. The

The evaluation of the reaction integrals gives rise to distance factor R contained in the Green's function is:
integrals whose kernel include the free-space Green's
function and its derivatives [PM731. This necessitates the R = 1i - F'I = V(x - x') 2 + (yP - y,)

2 + (Zp _ z,) 2  (1)

proper treating of four kinds of integrands. First, regular
integrals are solved by usual quadrature rules. Second, and determines if the integrand at the point P is regular (for
weakly singular integrands require mathematical transforms F d F' ) or singular (for F -- ').
before integrating. Third, strongly singular integrands are
only accesible to specialized integration methods. Finally, For the following, the propagation constant P3 is separated
observation points that are located very close to the into a real and an imaginary part:
integrational domain give rise to nearly singular integrals. = f

This paper presents powerful integration methods for each wl = /o4(' -16"- 1ob) /f' +1/r" (2)

integral, with the usual material parameters e, yu and K and the

The first purpose of the paper is to present different methods angular frequency w.
and their applicability to the different types of integrals. The One obtains then:
second purpose is to present a new accurate method to ej• R e AR

evaluate strongly singular kernels. The third purpose is to G = = - (cos(/3'R)- jsin-(P'R))
carefully compare the appropriate integration methods. To 4;rR 4rR / (3)
the authors' knowledge, the present complete description of The derivative V'G(F,F') in cartesian coordinates is then:
the integration methods is not available in the literature as
such. V'G ' -r e cos(/'R) + jsin(P'R)]

The organization of the paper is as follows. The following ;r 4
section presents the classification of the kernels. Then, the r e"F['-'sinti'R) + P/3" cos(P'R' (4)
four methods for regular, nearly singular, weakly singular R' 4;r [4'

and strongly singular integrands are presented with an
example of a rectangular surface element [HvHWOO]. A J1'coM,13R) + p3" sinlP'R))j

1054-4887 © 2002 ACES
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Consider each term in (3) and (4) when the observation Table 1 Classification of the integrands for R - 0
point P moves closer to the source point, or R -• 0. In this
case, (3) and (4) become singular, the order of their regular kernels
singularity is listed in Table 1. The imaginary part (5) of e n R(
the Green's function is regular, and further, the derivative of - -. jsin(P'R) (5)
the Green's function has a regular term (6). Mathematically,
(5) and (6) can be integrated with no further problems. r T e - R (6)

The real part of the Green's function (7) and parts (8) of the
derivative of the Green's function are weakly singular with weakly singular kernels ~ 1R
terms - 11R. This singularity can be easily regularized. er Cos6,R)(-csf')(7)

The last term (9) caused by the derivation of the Green's 4;R
function is strongly singular -~IR 2 for R--0. A f"- F eP"r it s(i( n -R (8)

regularisation must be carried out before an integration can R13 C0' of) jJ coswR- Rn j
be carried out. For the strongly singular case, the
regularisation is more complicated than for the weakly strongly singular kernels - 1.. 2

singular case. Appropriate integration methods are -necessary. • ' -FeP"R
ncsr,---cos(P'R) (9)

3. Integration Methods

The integration methods for the kernels in Table 1 are
chosen according to the following three cases: Table 2 Integration methods for the various source-

observation point distances R
- R > d: the distance between the observation point P and .....

the source point is greater than a predetermined minimal regular kernel
distance d (regular), R>d

- R < d: the distance between the observation point P and R < d regular integration - section 3.1
the source point is smaller than a predetermined minimal R -- 0
distance d (regular, but nearly singular),

- R -- 0: observation point and source point P coincide weakly singular kernels,
(weakly and strongly singular). R > d : regular integration - section 3.1

Table 2 shows a summary of which integration method is R <d : nearly singular integration -- section 3.4
applicable for the various source-observation point R --- 0 : weakly singular integration --- section 3.2
distances. As seen, special integration methods are needed
that correctly treat regular, nearly singular, weakly singular singular kernels
and strongly singular integral kernels. They are in detail: R> d : regular integration -, section 3.1
- Regular integration: Solved by a Gauss-Legendre R < d nearly singular integration -- section 3.4

quadrature method. The method is numerically accurate R-0 strongly singular integration section 3.3
and easy to implement. Section 3.1 sketches the method.

- Nearly singular integration: For a distance R smaller
than a minimal distance d , the integrand changes rapidly
and becomes nearly singular. The appropriate integration Strongly singular integration: Two methods in section

method is laid out in section 3.4. 3.3 carry out the integration of strongly singular
- Weakly singular integration: The method for weakly kernels. The methods are composed of the methods for

singular kernels is outlined in section 3.2, The weakly singular and regular kernels. Section 3.3.2

integration involves either a domain transform, a presents a new method that combines the domain
transform to polar coordinates or an extraction of the transform and the extraction of singularity. Transforms
singularity. and an extraction of singularity regularize the

singularities, the resulting kernels are integrated by the
Gauss-Legendre quadrature as in 3.1.
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3.1 Regular Integration 3.2.1 Transform to Polar Coordinates

A direct Gauss-Legendre quadrature is proposed for the The singular point P is arbitrarily located on the surface
regular parts in Table 2 [Abr7O], [Sch93]. In (10), the element, with its normalized coordinates u, -[-1,1],
general Gauss-Legendre quadrature for a general, regular u2 = [-1,1]. The weakly singular integrands are regularized
integrand F(u, ,u2) is given as: by a transform into polar coordinates [GG90]. The process

of regularization is depicted in Fig. 2. First, the surface
ff F(u1 ,u2 ,)g(u1 ,u2 )dudu2  element is partitioned into four rectangles V, with the

(10) singular point P located on the corner that is common to all

. '.' F( ) W rectangles. Each rectangle is then in turn subdivided into- F u,u 1,j g u w, wj two triangles, the integration is carried out on each of the

F is a function of two continuous variables u, and u2. They eight triangles separately.

correspond to the surface variables on a surface element in
the Method of Moments [HvHWOO]. The expression U(1,+ Ul 2

iu)duu2 is the differential surface element that v2 v,

expresses the transform of the surface differential into the 0

u1,u2 system.

For the numerical integration, the u,, u, are the nodes on (-1,-I) (+1,-I) (-1,-I) (+1,-i)

the surface in the interval u,. = [- 1,+ 1]. The w, and w, are Figure 2 Sub-division of a discretization element into

the weights for the nodes. Both are listed in the four quadrangles Vk and subsequent transform
mathematical literature [Abr70] and are not repeated here. to polar coordinates.

3.2 Weakly Singular Integration
The transform into polar coordinates p, 6 is

Three different methods are proposed in this section for the
numerical computation of weakly singular kernels if u, u" +Pcos5 (

R : u0:-u2 =u +psin i (12)
- section 3.2.1: regularization of the kernel by a transform duldu2 - pdpd6 (13)

into polar coordinates The integral is then in polar coordinates
- section 3.2.2: regularization by a domain transform g +1÷1 ÷1

- section 3.2.3: regularization by an extraction of the ffF(uiu 2 ).,Qu.,u2 )duldu,
singularity and subsequent analytical integration -1-1(14)

All three integration methods are presented for the sake of
completeness. The methods are later also used for the = ý Fi(1•,P(6)) gk(O',p(1))pdpd16

integration of strongly singular kernels.
The weight p that arises due to the transform from the

As an example consider the weakly singular term u ,u2-system into the p,i9-system lifts the singularity and
(x'- xP)/(4,rR2)P'cos(fP'R) (8) on a planar rectangular regularizes the integrand. The numerical integration of (14)

element as in Fig. I with a size of V/10 which is typical for is carried out by observing that the upper limit p(6j) is a
a surface element in a Method of Moments implementation. function of i6.

For the above example, the regularization of the integrand is
x = uý = 0.25m shown in Fig. 3. Fig 3a) shows the weakly singular
SP= ZA integrand in the u -,,usystem. Fig 3b) to 3e) depict theY U2 0.5mU1I2

z P = 0 m |regularized integrand in polar coordinates. The angle 6 is
20 +1 m / w P _-Y defined on the following intervals for the triangles in 3.2.2:

• X=Us - Fig. 3b): 4,02 - 6 <<5,18 and P(6) - -1,5/sin(6),
-1 mn Y' =u•- Fig. 3c): -1,1 . 0 < 0,59 and g6) - 0,75/cos(O),

-1 in +1 - Fig. 3d): 0,59 s 6 < 2,76 and 6) -0,5/sin(6),
Figure 1 Example geometry to outline integration - Fig. 3e): 2,76s <4,02 and #(6) - -1,25/cos(69).

accuracy.



66 ACES JOURNAL, VOL. 17, NO. 1, MARCH 2002, SI: APPROACHES TO BETTER ACCURACY/RESOLUTION IN CEM

a) C)• dudu2 = 2AD°ds~ds2 - (t, + 1)Ao dtdt2  (19)
4

AD' are the surfaces of the triangles in the u,,u,-system.
"For source and observation points that are not in the centre

ý) U, -= 0, u2 = 0 of a surface element, the A, are different for
--7 7 -ý-each triangle.

Figure 3 Transform of a weakly singular integrand into A weakly singular integral is hence regularized using the
regular sub-integrands using a transform into integration in (20):
polar coordinates. Each integrand is then ,1,1
normalized. ff F(u ,u2 ) Qu.,u )duldu,

-l -1 (0

As seen in Fig. 3 b) to e), the integrands present a smooth Ft ,÷4-+ ) -(t, +(l)a d

behavior. - fFi (t,, t, g (t,,+t2 ) A dtldt2

3.2.2 Domain Transform The -g(u1 ,u 7) are the weights arising by the transform of
Alternatively to the previous transform, the following the surface differential into the u, ,u -system. The transform
domain transform may be used. First, the rectangle in the of the differentials from the u, ,u2 -system into t, ,t2-system
u,,u 2 -system is subdivided (cf. Fig. 4) into the triangles is according to (19) adds the term (t, + 1) that lifts the
D,, D,, D3 and D4 [Duf82, Dom93]. The singular point P

is then located on the comer that is common to all triangles. singularity and regularizes the integrand.

In Fig. 5, the triangles arising in the regularization areU21+1 3 2(+ )'311 •2 +,1 depicted. 5b) to 5e) show the regularized integrands in the

i 2 2 t, ,t2 -system. Again the integrands are very smooth.

""D," 3 a)

(-2 (-1,-) (+1,-21)

Figure 4 Subdivision of a surface element into triangles,
and subsequent transform of a sub-triangle Dk
into a rectangle.

Figure 5 Transform of a weakly singular integrand into
A non-linear domain transform maps each triangle into a regular sub-integrands using a domain
rectangle, the singular point P is mapped to a singular edge. transform The sub-integrands are normalized.
The original variables u,,u, are transformed to new surface
variables s, =[0,l] and s, =[0,1] by: 3.2.3 Singularity Extraction
U=- (1 - s)u. + S, (1-suID, + S152U1  (15)

Ss1 )U1.1+S (I A., (6) The singularity of the Green's function can be lifted by
u =(1 u+ s s2 + SiS2U2  (16 subtracting an analytically integrable part. The method

The subscripts in the D, correspond to the number of each extracts the singularity in such a way that the extracted term

triangle k = 1 ....4 and its comer i = 1....3. Now, the interval is analytically integrated as in (21) for a singular point P:
is shifted to obtain symmetric integration limits e-JO-,/e-'jfR 1) +ff lduldu 2

s, (t, + 1)/2 (17) ff---du, u "fud (21)

s, =(t, + 1)/2 (18) By subtracting the inverse distance, the first integrand in
t, and t2 are now from -1 to +1. The differentials are (21) becomes regular. This term is integrated using the
transformed by the Jacobian: usual Gauss-Legendre integration as in section 3.1. The

remaining singular integral in 1/R is integrated analytically.
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For a linear triangular surface patch, the integration of 1/R 3.3.1 Transform to Polar Coordinates and
can be carried out analytically with no approximation. For Extraction of Singularity
higher order geometrical surface approximation functions
such as the biquadratic [HvHW00], however, the integration The transform to polar coordinates, origin at the point P,

cannot be carried out analytically. In this case the integrand analogous to section 3.2.1, (11) and (12), u1 - u" + pcos a,

is developped into a series. For the x-coordinate, one and u2 -- U + p sin 0, reduces the order of the singularity in
obtains: (9) by one by virtue of the integration weight

dufdu2 = pdpdO. The resulting singularity is only weak,
ax,_xp) _u)x' x' u(22) and the method for the extraction of the singularity in
(,-(U 0u) + .d U 2  section 3.2.3 is applicable. The term that determines the

"singularity in (9) is given by:

y and z are analogous. Completing and combining the (x',- x)/(4-rR') (25)
expressions in x, y, and z leads to

For an analytical integration in p, the integrand is developed

g11 V-" (u, - u) 2 + into a series around the point P. With (11) and (12),
u,-, uI - up = p cos 6, u2 - u' = p sin 0, one obtains for an x-

9-1/ g 2 u, .- r(u, -u) 2 + (23) component in (22):

2g12Jul(u., au 1)= p,
S(26)

The integration according to u, u2 in (23) is carried out % ' ';

analytically [SC95]. With the Taylor series, one finally = pA () + 0(p2)
obtains: Analogous to (26), the expressions for the y- and z-

I .. components yield expressions in A,2(0) and A,3(0). With
ffldudu 2  these, one obtains the term that is necessary to express the

1. •.distance R:

[u -[ ln 2 u .2  ] -U A(O) (0A)' +( 2 ( 0)
2 + A, (O0)2  (27)" - InR+-9 (2 up+ - 'P

I[912  L The distance R depends now on polar coordinates and is

....-, given with (26) and (27):

+u2u•2)ln R g/,(u _uf)+ gR_2 (u2_u4)1] R 0(p,¶)=p2A2(6))+0(p3) (28)

V -91 I g,.
,.,.,. With (28) and (x'-xp)/R=A(6)/A(0)+O(o) one
(24) obtains:

3.3 Strongly Singular Integration (X'RX") (-)(X) 1
= ý A(t) p'A'(0) +0(p'

For the integration of strongly singular integrands, the R A(i10 (29)
methods of section 3.2 are combined. The combinations 1 ((k) 0(p) (2
yield regular integrands that are dealt with the method = - A-ý() + A2(O )+ 0(p))
described in 3.1. Incorporating the integration weight p for the transform of
Two methods lift the singularity: the differentials from the u,,u 2 -system into the p,O-
- The application of a transform to polar coordinates system, one obtains the expression:

[PG89], [GG90], [GC87] and subsequent extraction of (X'- 1 / (d) (30)
the singularity. This is presented in section 3.3.1. 4,-R3 )du,du2 = - A +O (p) ) dpd(3

- A new method in section 3.3.2 combines the domain

transform and a subsequent extraction of the singularity. The extraction of the singularity in (30) according to (9)

This new method yields very smooth integrands that are produces the integrand:

accessible to numerical integrations. [.1 A (0) (x'-xp)e"'pcos(flr)] lAt(k) (31)

As an example, consider the integration of the singular 4,r pA'(IJ) R3  4;r 4ar pA'(6)

kernel (9) in the geometry in Fig. 1.
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As the limit 0(p)/p -- 0(1) in the first parenthesis in (31)

exists, the singularity in the first term is lifted and the a a)

integrand is regular. The integration is then carried out e.g. b)

by the method in section 3.1 in polar coordinates p(t) and

6 for all rectangles V,: 4d
1 4 6.ý ° r lA(O )

4"--r ,fo[p A'(0) ....

(32)
(x'(p,o)-xP) ) Figure 6 Transform of the strongly singular integrand

R((p, p) 7 dp into regular sub-domains using a transform to
polar coordinates and a singularity extraction.

For the evaluation of the extracted term in (31), the Cauchy- Integrands in sub-domains are normalized.
limit is computed:

1 __ __) dpdO
4;r .(6)-O.) ,1P (3P 3.3.2 Domain transform and extraction of

i 0 3n singularity= 1lira ý A(0) In •t)dO

4.7r,1)- i, ) ýp,()) The new method combines the domain transform and the

Now, introduce an E vicinity using polar coordinates: extraction of singularity in a convenient way. Analogous to

Z, 2 ( V2 3.3.1, the strongly singular part (9) due to the derivative of
R1?2=, (x' - P+ '-Y, +Z'-Z )+ (34) the Green's function is treated. The order of the singularity

=p,()a()+ Op ))is reduced by one by virtue of the integration weight

This is then: du'du2 = 2A'~dslds2 = A°'(t, + 1)/4dtdt2 in (19) (see

3.2.2). This weight is formed by the transform of the
E 0(p(6)) E O(EC) (35) differentials from the u,,u0-system into the t,t2-system.

(O)= A E2 A( (15) to (18) show the transform for u,,(t,,t 2) and u1k(t,,t 2 ).

(35) in (33), one obtains k = 1.. .4 are the number of the triangle in Fig. 4. One

i4"1A () (An I) obtains for (9) with (19) for the x-component the weakly
4 _r,- (. oA(f singular integrand:

wt A n(((t, ,t 2 xP) [cos(flR,(t,, 2))] A0(tL+ 1)(38)
=-l4 f~ l((~()d (PR R((t,,t] 4- 4

-• r 3r (g) _R (t I )j 4;

(36) In (38), the singular point P is mapped onto the edge

with (see also [GC87], [GG90], [HRHR97], [PG89]) t, = -1. In contrast to 3.2.3 and 3.3.1, the distance factor is
, t, 1 not expressed in the u,,u 2-system around the point P, but

-1 lim.j [ d(lnE)=0 (37) rather in the t,It 2-system along the edge t, = -1. Using a

4r [ , A [series expansion, the extracted term is analytically integrable
The expression in brackets vanishes when carrying out the according to t,. For the x-component (the y- and z-

integration and summation before taking the limit. Then the components are analogous) one obtains:
limit does not need to be carried out anymore. The strongly -X X') +0( ,+12singular part in (9) caused by the derivative of the Green's (x,'- xt = •- (tl +1)+O((t, + 1)2) (39)
function, is now readily treated by (31), (32), and (36). 1

Consider the integrand in (32). In Fig. 6a), the integrand is R2(t, ,t)= (t + 1)'f(t) + 0((t +I)'4

shown in the u,,u 2-system. It is then transformed into the 2 (40)

sub-integrands as in Fig. 6b) to e). The sub-integrands are with
formed by the sub-division process in Fig. 2. The ,2 / 2 2

integration domains are: f(t)= dxq + +-z (41)
- Fig. 6b): 4,02 < 6 < 5,18 and (tt) =-1,5/sin(6), (0 +t a-t1 ) ._, d otý ) .,

Fi. c) -,1< 9 059an,.)-1075co(O,-1-

- Fig. 6c): -1,1 < i9 < 0,59 and p'(6) = 0,75/cos(), The term needed for the extraction of the singularity is given
Fig. 6d) 0,59 < t < 2,76 and 6Y(0) = 0,5/sin(6). by (39) - (41). With (38), they yield:

- Fig. 6e): 2,76: 9< 4,02 and p(i9) -1,25/cos(O).
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-x•(tt 2 )- x" en"&({"') cos(fi'Rk{tI,t 2 ,)(tl + l)] AnR(,t)(42) -1 ..

1 4 1 ax;(t,,t2 )
16e (t, + 1)fý'(tý) dt-- .- AA &

The terms in the brackets are regular Figure 7 Transform of the strongly singular integrand

into regular sub-domains using a domain
1 .÷,- 1 a0x(,( ,t2 ) transform and a singularity extraction.

_ t~ 2 -~~.,J) d1 Integrands in sub-domains are normalized.

(t It e"'"")CO-P (42)

R, (t, t ,))(tl +)]dtfdt 3 Nearly Singular Integration

R (t1 t2 )I The integrands in Method of Moment computations are

The integration is carried out using the method in 3.1. nearly singular when structures with a small thickness are to
be computed, or if fields very close to a surface must be

For the second term in (42), the Cauchy limit is formed evaluated. In the first case, the problem is noticeable when
with the substitution t = t1 + 1: setting up the matrix, in the second case when computing

Te t s in tets ae rthe fields after the surfac the urentha been computed.4 1_f(f , 2  dtdt2  (44) Figures8a) and 8b) show the two cases. In Fig. 8a),cthe

16r -,.AD" t2) atf 1,i-` distance between two disrcrete surface elements is very small

For t, -- 0,one introduces an e-vicinity as in (40) compared to the dimensions of the elements. In Fig. 8b),
the diste d of an observation point P to the surface isAD'tf2 (t2 ) + O(t), (45) smaller than the geometrical dimensions of the discretization

one then obtains from (44) elements.
1
I lim 

dA°

l 1 ax :(t ,,t2) .(ln(2f (t2 )) - In e)dt, (46) 1 d<<1f volz e- I 7d

SAD, x(tt ln(2f(t)d a) b) n
-6.r ,,( at, . Figure 8 Cases when nearly singular integrals are

with (see (37)) encountered.
4 f'" 1 _ 1(t , .2"DfX 1 axk(t" 0 dt2 In(e) = 0 (47)

im ,1 _, f(t 2) at, The straight-forward method to evaluate nearly singular
integrals is to increase the number of nodes within the

The integration method is now visualized by the example of numerical quadrature method. In this case, the number of
the integrand in (43) as derived from (9). The strongly nodes increases very quickly when the distance d is reduced.
singular integrand in the u,,u 2 -system is in Fig. 7a). The A second method is to solve the nearly singular integrals by
integrands after transform and extraction are shown in the subdividing the surface elements in smaller elements, and to
t, ,t2-system in Fig. 7b) to 7e). The strongly singular part continue the subdivision process until convergence is
in (9) is transformed into a very smoothly varying function, achieved. This ensures that the number of nodes is increased
Hence, the integration is carried out accurately with only a in the vicinity of the observation point. The subdivision
few nodes ensureing a fast computation. process is numerically expensive and is inefficient for very

small distances d. Furthermore, the accuracy of a Gauss-
Legendre quadrature depends on the number of nodes: The
integration using 5 nodes of an element that has been
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subdivided into two elements allows a correct integration of 5 1
a polynomial of the 9th order on each subelement. Without '..

the subdivision process, a polynomial of the 19th order 04 ......................................................... _ _ n =4

could be integrated. 3 ", i....f " ............... '"!.. .. .. ..... nn 8 1

The efficient approach in [Tel87] und [Hay92] is to
transform the surface variables u• ,u2 in such a way that the 2........ 1 ...........
resulting Jacobian lifts the nearly-singularity. This is to say
that the Jacobian should approach the distance d at the 1................

critical point [Tel87], [Hay92]. The transform also
concentrates the nodes around the location of the near- 0 . --

singularity which leads to a better integration.

4. Example Integrals -10 0.5 1 zP (m) 1.5 2

The previously presented methods for integrations in Figure 9 Regular integrand. Error for various locations z
Method of Moments computations are now applied to an of observation point and number of nodes.
analytical problem. The integrals in Table 3 are derived from
the integrals in Table 1 to yield the analytically integrable 4.1 Regular Integrals
functionals (48) and (49). The geometry for the verification
is a quadratic surface element that is centered at the origin as The observation point P is located at distances from
in Fig. I. Each side has a length of 2 m at a wavelength of zP = 0,01 m to z' = 2 m from the surface element.
20 m. Hence, the length of each side is X/10. The Consequently, the kernel varies from nearly singular R <d
observation point P is located at x = 0.25 m, y = 0.5 m and to regular R > d. An integration using the Gauss-Legendre
a variable height z. The source point is located at z = 0. in 3.1 with n x n nodes yields the error in Fig. 9. For large

distances from the surface to the observation point P, very
few nodes are sufficient for a very low error. The error

Table 3 Example integrals for the verification of the increases with decreasing distance z but can be decreased by
integration methods. using more nodes. The method fails for very small distances

z < 0.25 m.

weakly singular kernel 4a 2jjl-- , 2dS' (4) 4.2 Weakly Singular Integralsps [,- r I
The observation point is located at z' = 0 on the surface of

R - 0 weakly singular 4.2 the element.

sr lse . r- - 4.2.1 Transform to Polar Coordinates

strongly singular kernel -- , dS' (49) The integration of (48) is carried out by subdividing theSff S' Vr r I surface element into four sub-elements, shown in Fig. 10

R >d (middle) as dashed lines. The surface integration on each

R < d regular -- 4.1 quadrangle composed of two triangles D, and Dk,, with
k = 1...8 (Fig. 10 rightmost) again involves n x n nodes.

R -- 0 strongly singular -- 4.3 n/2-nodes are used for the '-integration per triangle Dk, the

R < d nearly singular -- 4.4 integration according p is then carried out using n nodes.
(-,1[ P y (+1,+1) -,1• (+0.25,+1) (+1,+l)

The integral is solved analytically and numerically, the "0 ii ,, ',1
following error evaluates the quality of the method: ,, .. .D'.
error in % = lanalytical - numericall. 10 (50) --l,--) (+i,-) (-1,-) (+1,-I) (40.25,o5) (+1,05)

lanalyticall Figure 10 Surface element (z = 0) and representation

Note that it is only possible to analytically solve the with normalized, local coordinates. The
integrations in Table 3 for planar geometries, not for rectangle is subdivided into four quadrangles
arbitrary ones. composed of two triangles each.
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The integration of (48) is itemized in Table 4. Convergence Y-1 +I.+) i-1,+I) (+1+1)

is fast with increasing number of nodes to the correct value.0
For n > 32, no improvements are observed, the result is
stable with an increasing number of nodes. 0 0 0

Table 4 Weakly singular integration of (48) with 0 a ) b) 1)

transform into polar coordinates. Analytical a) b)
result is -0.0579393378. Figure 11 Two discretizations of the geometry in Fig. 1

n result error (%) for P(x = 0.25 m, y = 0.5 m, z = 0).
2 -0.0519166274 10.39
4 -0.0570911480 14.64" 101 (-1+1) Y (-1+1) (+1+1) (-+ (,+I)

6 -0.0578289883 19.05.10-2 20 o,
8 -0.0579257050 23.53"10' .1 D,
16 -0.0579393352 45.73.10- Dg-
32 -0.0579393378 71.31.10-1"64 -0.0579393378 26.96.10-1' o+11 446 -00 7 3 3 7 269 .0 0(-1,-1) (+1,-1) (-1,-i) (+1,-I) (-1.,-I) (+1,-1)

Figure 12 Surface element (z = 0) and representation
4.2.2 Domain Transform with transform to polar coordinates (middle)

and domain transform (rightmost). Polar
The surface element is sub-divided into four triangles that coordinates: The rectangle is subdivided into
are in turn mapped to quadrangles. Again, the integration four quadrangles. Domain transform: The
involves n x n-nodes corresponding to the number of nodes rectangle is subdivided into four quadrangles
of the previous example. Table 5 shows the results for the composed of two triangles each. Only element
method. Again, convergence to the correct value is observed 1 (upper right corner) is shown.
with a stable result beyond n = 32 nodes.

Table 5 Weakly singular integration of (48) with the discretization in Fig. 1la) the surface integral in (49)

domain transform. Analytical result is vanishes (see 3.3), the integration is completely determined
-0.0579393378. by the line integral. In Fig. lIb) both terms contribute to

n result error (%) the result.

2 -0.0360523044 37.78 The transforms in turn are sketched in Fig. 12.
4 -0.0549348239 51.86.10'
6 -0.0578618391 13.38.102 4.3.1 Transform to Polar Coordinates and
8 -0.0579760027 63.28.10-` Extraction of Singularity
16 -0.0579393184 33.55 "10
32 -0.5793933785 22.88" 10`1° [GG90] evaluates the integral for many combinations of

64 -0.0579393378 14.28.10-"° observation points and surface elements. These cases have
been verified with the present method. The transform is
shown in Fig. 12 (middle).

4.3 Strongly Singular Integration For a discretization into one element (cf. Fig. 1la), the
results are summarized in Table 6. A good convergence is

The strongly singular integration (49) with the observation observed for an increasing number of nodes. For n = 6, an
point P(x = 0,25 m, y = 0,5 m, z = 0) is carried out error of almost 0.05 % is achieved. The method remains
according to the Cauchy singular integral. The integration stable for a larger number of nodes.
domain is subdivided into four sub-domains as in Fig. 11.
This permits the evaluation of the accuracy of the surface The integration according to Fig. 1 lb) maps the observation
integral and the line integral. Fig 1 la) shows a discretization point to u, - -1, u2 - -1 in local coordinates (Fig. 12
into only one surface element. Fig. 1 lb) discretizes the middle). For each triangle, n x n nodes are used, the line
geometry into four elements, the observation point is then integral uses again n nodes. Table 7 shows the results of the
on the corner common to each discretization element. For integration. More nodes are needed for the same accuracy

compared to a discretization into one element only.
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Table 6 Strongly singular integration of (49) after Table 8 Strongly singular integration of (49) by
transform to polar coordinates according to domain transform according to Fig. 1la).
Fig. 10 and I la). Analytical result is Analytical result is -0.052741730991244.
-0.052741730991244.

_________________n surface integral line integral error (%)n surface integral line integral error (%) 2 0 -0.0883362945 67.49

2 0 -0.0471475986 10.61 4 0 -0.0615749331 16.75
4 0 -0.0524191674 61.16.10'2 6 0 -0.0529196853 33.74.102
6 0 -0.0527116953 56.95.10-' 8 0 -0.0525051309 44.86.102
8 0 -0.0527389852 52.06.10-4 16 0 -0.0527419384 39.33.10-'

16 0 -0.0527417307 49.36.10-' 32 0 -0.0527417310 91.62-10"1

32 0 -0.0527417310 54.90 "10-1° 64 0 -0.0527417310 22.17-10-10

64 0 -0.0527417310 18.89.10.10

Table 7 Strongly singular integration of (49) after Table 9 Strongly singular integration of (49) by
transform to polar coordinates according to domain transform according to Fig. 12.
Fig. 10 and 12. Analytical result is Analytical result is -0.052741730991244.
-0.052741730991244.-0.052741730991244. n surface integral line integral error (%)

n surface integral line integral error(%) 2 0.2330166165 -0.1652108191 22.86.10'1
2 0.2416862365 -0.1793554832 21.82.10" 4 0.1880115487 -0.2448561289 77.79.10'
4 0.1785239348 -0.2481406072 32 6 0.1809303725 -0.2427592011 17,23
6 0.1849263635 -0.2398825203 41.99.10-' 8 0.1869992436 -0.2386698415 20.31.10-1
8 0.1868837023 -0.2388539817 14.63.10-' 16 0.1864232112 -0.2391626624 43.23.10-4
16 0.1864218113 -0.2391635614 36.29.106 32 0.1864218178 -0.2391635488 19.17.10-9
32 0.1864218178 -0.2391635488 12.23.10-9 64 0.1864218178 -0.2391635488 39.71-10-io

64 0.1864218178 -0.2391635488 19.75.1010

4.3.2 Domain Transform and Extraction of 4.4 Nearly singular integrals
Singularity

As seen in 3.1, the integration using a Gauss-Legendre
The integration with domain transform and subsequent quadrature when the observation point is close to a
extraction of the singularity yields the results in Table 8. surface (see Fig. 1) yields only slowly converging results.
The integration shows stable results for an increasing A large number of nodes is required. Even for n = 32, the
number of nodes. An accuracy of better than 0.01 % is error reaches 3000 % for an observation point located at
reached for 16 nodes. z" = 0.01 m. The method in [Tel87], [Hay92] allows a fast

A discretization according to Fig. 1 lb) results in a sub- integration with a high level of accuracy.

division as shown in Fig. 12 for the element 1. The Fig. 13 shows the error obtained with the method in 3.4 for
singularity is located at u, = -1, u2 = -1 for each triangle, an increasing number of nodes. The shortest distance

The integration is carried out according to 3.3.2, n x n between an observation and a source point is z" = 0.01 m.
nodes are used. Table 9 shows the results for both surface The largest error is for n = 16 at a distance of z" = 0.02 m
and line integrals. A stable convergence is achieved, an error and evaluates to 2.1631 %. For n = 32, this error is reduced
better than 0.01 % is obtained for n = 16. to 0.2106 %.

The integrations in 3.3.1 and 3.3.2 yield both results within Figure 14 shows a comparison between the methods in 3.1
the same range of accuracy. For the result shown, the and 3.4 for the same number n = 4 and n = 32. It is clear
method in 3.3.2 (viz. the domain transform and subsequent from this picture that the integration according 3.4 yields
extraction of singularity) results in smaller errors for only much better results for nearly singular integrals.
few nodes.
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S5 F7. -' I __________

4 ... .4 -. n =4, regular 1
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......... - n 32 nearly sing.
.o n.. 3
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Figure 14 Nearly singular integrand. Error curves for the
Figure 13 Nearly singular integrand. Error curves for an methods in 4.1 and 4.4 and an increasing number

increasing number of nodes with observation of nodes with observation point at various
point at various distances to the surface distances to the surface element.
element.

[GG90] M. Guiggiani, A. Gigante, "A General Algorithm

5. Conclusions for Multidimensional Cauchy Principal Value
Integrals in the Boundary Element Method",

By properly identifying the orders of the singularity with the Transactions of the ASME, Vol. 57, pp. 906-
reaction integrals of the Method of Moments formulation, 915, December 1990.
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for each of the integrals. Regular integrals are solved by a "Electromagnetic scattering by Arbitrary Surfaces

Gauss-Legendre quadrature. Weakly singular integrals Modelled by Linear Triangles and Biquadratic
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numerically. Strongly singular integrals are regularized by a 2000, Vol. 4, pp. 2290-2293.
two stage process and integrated both analytically and [Hay92] K. Hayami, A Projection Transformation Method
numerically. The correct method ensures for each kernel a for Nearly Singular Surface Boundary Element
fast and stable convergence to the correct values. Integrals, Springer-Verlag, 1992.
The methods are general enough to be used as methods for [HRHR97] C.J. Huber, W. Rieger, M. Haas, W.M.
Thrfae m nethods are h genralough toegseds mesingulityThos fRucker, "The numerical treatment of singular
surface integrals with various degrees of singularity. The integrals in boundary element calculations",
methods are not restricted to Method of Moments ACES Journal, vol. 12, nu. 2, pp. 121-126,
formulations in Computational Electromagnetics. 1997.
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