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Adaptive Parameterization and Approximation
for CAD Data Reduction

G. Wahu, J. M. Brun, and A. Bouras

Abstract. Data reduction is frequently needed in curve and surface
model conversion, primarily for CAD data exchanges, but also to ease the
designer's work. Such data reduction corresponds globally to a number of
pole reductions. A previous analysis has shown that there are two main
criteria in this domain: the parametrization and the extremity conditions.
The possibility of defining an optimum optimorum solution for the ap-
proximations used in data reduction is noted. The relation between this
optimum optimorum and the existence of an optimal parametrization leads
to a new approach for curve and surface approximation. This approach
has the advantage of modifying the parameter settings in a transparent
way, while matching easily the extremity conditions. Finally, the extension
to surface data reduction of this scheme is presented.

§1. Introduction

Designers have to create shapes in highly constrained environments. Curves
and surfaces have to join precisely under tangency and curvature conditions;
they have to meet some points as precisely as possible while behaving "nicely"
between these points. All these conditions result into curves and surfaces ei-
ther over-segmented or of dangerously high degree, and eventually both. Such
curves and surfaces that are defined by a number of poles larger than neces-
sary, induce severe problems in further use. Data exchange with other systems
can be impossible if the degree exceeds what is allowed in the receiving sys-
tem, or untractable if the number of curves or surfaces generated is too large.
Data quality can be very poor. Curves and surfaces which are defined by an
extremely large number of poles have difficulties in behaving "nicely". One
knows also that the parametrization of curves and surfaces is crucial when
defining them by discrete points [7,9,10,12]. Strangely, it is generally consid-
ered that CAD data reduction must be done with the original parametrization.

One considers also that the quality of a data reduction is directly re-
lated to the distance between points of a same parameter value, doing so
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one mixes distances perpendicular to the original curve with tangential dis-
tances corresponding to different parametrizations. One must remark also that
some approaches cannot meet essential conditions such as end conditions. We
present here some results of our search for the optimal parametrization which
minimizes the amount of data needed to fit curves and surfaces to a given
precision.

§2. Previous Approaches

2.1 Degree reduction of B6zier curves

This problem was addressed early and is considered as the inverse problem
to degree elevation [3,4,5,6,7,11,14]. Degree elevation is obtained step by step
by a de Casteljau process of poles creation, which can be done either from
poles 7r0 to 7rn or trn to 7r0 which produces two different results depending on
the way it is processed. The idea of a blend between these two elementary
processes, with blending coefficients depending on the rank in each elementary
process, is a natural one. It was an important insight in this process that
enabled Eck [5,6] to find the optimal blending and to prove that it is the best
componentwise approximation. However, this optimal solution, aside from
its componentwise limitation, assumes that the curve parametrization stays
unchanged. Improvements over the Eck's solution can be expected from a
global optimization and parametrization modifications.

2.2 Reduction in the number of poles for B-splines

The reduction of the number of poles is a crucial problem when converting
from B-Splines to the B1zier form. B-Splines can be decomposed into B6zier
curves or patches of low degree (typically 3 with C2 continuity). Doing so
produces huge sets of low degree B1zier curves or patches, which are unman-
ageable on most B1zier based CAD systems.

2.3 Classical parametrization schemes

Classical parametrization schemes were presented by Farin [7]. His conclusions
are that it is good practice to test chordal parametrization first, then Lee's cen-
tripetal scheme and ultimately Foley's tangent variations. Such parametriza-
tions come from kinematic analogies where one travels on the curve at con-
stant speed or slows down on curves depending on centrifugal forces or the
speed of turning the steering wheel. These schemes, while grounded in com-
mon sense, were probably found too empiric by Hosheck [10], who proposed a
scheme relating parameter modifications to tangential errors. In this scheme,
for a given parametrization, a least square minimization produces a curve
minimizing both normal and tangential errors. Iterative modifications of the
parametrization using, at each step, the parametrization produced by the
preceding least square modifications would be extremely computer intensive.
Hosheck uses instead a projection of the errors on the curve tangents for
each parameter value, in order to optimize the parametrization. However, the
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process remains computer intensive since it still has to loop on least square
minimizations. Moreover the process can have convergency difficulties that
can stop the process far from it's goal. This goal is to reach a parametriza-
tion producing normal errors, called "intrinsic parametrization" by Hosheck.
The optimal parametrization sought here can be defined for the approxima-
tion of curves or surfaces known everywhere, or nearly everywhere. It is the
parametrization for which the maximum distances between each point on a
curve and the approximated curve is minimal, which implies that these dis-
tances are perpendicular to the curve.

§3. Proposed Approach

3.1 Early approaches to optimal parametrization

In his thesis, P. B~zier [1] considers implicitly that a parametrization pro-
portional to curvilinear abscissa is optimal, and that chordal parametrization
of sparse sets of points is an approximation that can be slightly improved
taking circles passing through points taken 3 by 3. At the same time (1975)
J. M. Brun, in a non published study, took the B~zier curve defined by the
sparse set of points, taken as poles of the curve, and used their projections
on this curve as parameters for the points. He found that improvements over
this parametrization are possible when an iterative modification of the curve
is made using normal errors to move poles and tangential errors to modify
the parametrization. The computing power available by that time imposed
to stop the process after a small number of iterations, and the scarce set of
points prevented to define what can be an optimal parametrization, since the
definition of a distance between curves was not possible.

3.2 Our search of an optimal parametrization

Following similar goals as Hosheck [10], we have tried to define intrinsic
parametrization of curves, related only to shape characteristics. The first char-
acteristic of a curve is it's length, corresponding to the curvilinear abscissa s
as an intrinsic parametrization of the curve. Then, any other parametrization
can be defined as a parametrization law: t = f(s). We found that a mathe-
matically sound strategy can be to approximate the optimal law t = f(s) by
a power series t = s(a + b * s + c * s2 

±...) [2]. The coefficients of this series
can be derived from geometric extremity conditions: end points produce t = S
(called a linear law), end tangents produce t = s(a + b * s) (called a parabolic
law) and adding curvatures produce t = s(a + b * s + c * s2) (called a cubic
law). Depending on the curve shapes, the law to use needs more or less com-
pletion, and the results are convincing up to curve shapes with one inflexion.
For curve shapes of higher complexity, higher degree series are needed, and
the cubic scheme was found complex enough to avoid going further. In such
cases, a segmentation of the curve allowing a piecewise approximation of the
t = f(s) law was envisioned.
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3.3 Are designer's skills inherently better than mathematics?

While experimenting with our mathematical approaches, either improving the
degree of t = f(s) or taking care of curvature extrema, it was found that an
experienced designer was always able to improve the result [13]. He just moves
poles interactively. The parametrization of the designer's curve produces a
curve significantly closer to the target curve than any mathematical approach.
It was thus considered of interest to analyze the designer's actions, and to
reproduce them by appropriate heuristics.

3.4 The designer's algorithm

The experienced designer knows the influence of a pole displacement and "in-
tegrates" the errors on the curve (perpendicular to the target curve) as "de-
mands" to modify each pole with "weights" implicitly given by the coefficients
B!'(tj), heavily influenced by his experience and adjusted by the feedback of
the curve response to his modifications. In this process of curve adjustment
by displacing poles, he simultaneously modifies the curve parametrization and
the curve shape until he obtains a global optimum for which any pole displace-
ment would increase normal errors at some places more than it would reduce
it at others. The experienced designer knows pretty well that a pole dis-
placement has no influence on the normal errors at places parallel to that
displacement. In doing so, he has the ability to reduce errors by parametriza-
tion improvements, even though he is generally unaware of it. This analysis
of the rationale behind the designer's heuristics produces an algorithm that
can be called the designer's algorithm:

Extract the sample points Pj from the original curve:
The number of points Pj has a direct influence on the performance of the
process. This sample of points can be refined to improve the precision of
the approximation and to obtain better convergence.

Construct an initialization curve.

Iterate while the process converges until the desired precision is reached:
1) For each point Pj, seek for the point C(tj) of the approximation curve

whose normal passes through Pj,
2) Check the precision of the approximation,
3) Find the maximum errors,
4) For each pole, calculate and apply a "displacement demand",
5) Study the convergence of the process.

The "displacement demand" on a pole is that 6tri = -j(Pj - C(tj))B!1(tj),
see Fig. 1.

3.5 The math behind the 'designer's algorithm'

When the designer's algorithm reaches it's goal, all the errors are normal to
the approximating curve, and the parametrization of the given curve is given
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Fig. 1. The designer's algorithm.

by the approximation curve C(t). With such a parametrization, the least
square approach minimizes the error function:

m

E = -(Pj - C(tj))
j=1

where Pj are again the sampling points, and the approximation is

nc(tj) = E ?rj R(tj).
i=O

The minimizing conditions E= 0 leads to

m nt

(Pj- -rk B n(tj))B.n(tJ) = 0;i E [0, n].
j=1 k=O

For Go conditions, 7r0 = P1 and rn = Pm are the curve's extremities. For
G1 conditions, r, and rn-1 are constrained to lay on the extremity tangents.
For convergence, we can identify the following least square conditions on the
designer's algorithm:

-- (Pj - C(tj))B (tj) = 0;i E [0, n].

After convergence, the designer's algorithm produces

* a parametrization where errors are normal to the curve,

* the least square solution for this parametrization.

The existence and uniqueness of this solution relies on the convergence of
the process and the uniqueness of the parametrization. Aside from proofs
of the convergence that mathematicians may provide, we can say that the
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convergence of the process is typically slow but regular. However, single it-
erations are much faster than the mean square resolutions used by Hosheck.
Globally, the performance can be compared favorably with Hosheck's intrinsic
parametrization, which has the same goal of normal errors but a convergence
that can be irregular.

Using a mastering of the process convergence [8], we were able to improve
considerably the convergence rate of a regular convergence such as for the de-
signer's algorithm. Depending on the initializing curve, the process can fall in
a "convergence trap". To get out such traps, one can envisage using simulated
annealing techniques. However, we have observed that our convergence mas-
tering techniques combine jumping over traps to process acceleration. The
uniqueness of the parametrization would be ensured by errors normal to the
given curve, but it can be questionable for errors normal to the approximating

curve. Aside from mathematical proofs, we remark that when the approxi-
mation is good, both normals are equivalent and so are the parametrizations.
Moreover, if one minimizes the maximum errors only, as with the Tchebychev
minimax approach, the normals at these points are common to both curves.
This corresponds to a real designer's actions who takes care of maximum errors

only, so the designer's algorithm has to use a "displacement demand":

bik , i E [0, n],

k=1

bik = maxk((Pj - C(tj))B(

The maxk function produces the maximum value on the interval k between
two crossings of Pj and C(tj). This displacement demand corresponds to a
curve's distance which is a mix of the least square distance and the mini-
max of Tchebychev. When using this distance, one speeds up the algorithm
and produces a better accuracy since the result is closer to an equioscillat-

ing approximation. An extension of the 'designer's algorithm' to B-Splines or
NURBS would be straight forward: one has just to replace the B.'(t) weight-
ing function by corresponding ones. However, node sequence modifications
are not done implicitly by such extensions, and an effective designer's algo-
rithm must include node sequence definition. The extension to surfaces is
also straight forward, but it has the additional advantage of working where
designers may have trouble moving poles interactively. This extension is the
following:

1) Reduce boundary curves complexity and adjust degree on opposite curves.

2) Use a Coons bilinear interpolant of the boundary curves as starting point.

3) Iterate on poles' displacements like for curves.

Pole displacements are modified by the use of errors normal to the approxi-

mating surface S(u, v) and weighting functions B,(u) B72(v) in place of C(t)
and BP(t). Then

n m

67ri- = E(Pki - S(uk,v1))B!(uk)BT(vL);i E [0, n],j E [0, m],
i=O j=O
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Fig. 2. (a) Go Hoschek, (b)-(c): Go and C1 designer's algorithm.

Fig. 3. (a) Go Hoschek, (b)-(c): Go and C1 designer's algorithm.

Fig. 4. (a) Go Hoschek, (b)-(c): Go and C' designer's algorithm.

where S(u, v) = E__ ZEo •rijBn(u)Bj-(v). The 'designer's algorithm' on
surfaces has the same behavior as for curves, but the computing time is obvi-
ously higher and the convergence mastering much more important. Replacing
the least square distance by the local maxima distance would speed up the
process quite efficiently like for curves.
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§4. Results

4.1 B~zier and B-spline curves

The first test uses a degree-10 B6zier curve, proposed by Bogacki [3]. The first
approximations are calculated by using the Hoschek's Go solution (Fig.2a).
The next curves are the GO (Fig.2b) and G1 (Fig.2c) approximations obtained
after application of the proposed 'designer's algorithm'. The precision are
respectively: 0.029, 0.024, 0.027. Note our process adapts nicely to the G1
condition.

The second test curve (Fig. 3) is a 'real' B6zier curve, found in CAD
data transfer. Designers feel comfortable in reducing from degree 7 to 4 at
the cost of the cancellation of a small inflexion close to the right extremity.
Here the smoothed inflexion degrades the designer's algorithm curve when

a G 1 condition is needed. These curves precision are respectively 0.018 for
Hoschek's GO curves, and 0.013, 0.084 for the Go and G 1 designer's algorithm
curves.

The last test curve (Fig. 4) is also a 'real' curve. It is a B-Spline curve
defined by 28 poles with a parametrization law more or less linear. This
curve has a somewhat chaotic curvature repartition that can be smoothed
vigorously with a degree 5 B6zier curve. The designer's algorithm process
again gives much better results than Hoschek's solution with the GO condition.
The precision obtained is 0.00138 for Hoschek's GO curve, and 0.00095 and
0.00097 for our Go and G1 curves, respectively. Since we share with Hosheck
the principal of searching a parametrization producing normal errors, our
better result is due to better and more regular convergence.

4.2 Surfaces

Surfaces are computationally much more expensive than curves, but the pos-
sible data reduction is also much higher. Consider for example a B-spline

surface defined by a network of 23 * 23 poles (Fig. 5a).

Fig. 5. Control polygons: Original (a) Coons/B~zier (b) 'Designer's Algorithm' (c).

Since it is a 3 * 3 degree B-spline surface, the number of poles would be
16 * 22 * 22, if converted to a set of 3 * 3 degree B1zier patches. It is possible to

convert it to a 5*5 degree B1zier surface of 36 poles only. We use the degree-5*5
Coons/B6zier surface (Fig. 5b) as initial surface. Figure (Fig. 6a) represents
the evolution of the error along the surface. At this stage of the process,
the approximation's relative error is 0.0475. Then the designer's algorithm is
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Fig. 6. Errors: Coons/B1zier (a) 'Designer's Algorithm' (b).

applied to the surface (Fig. 5b), and one obtains the surface (Fig. 5c) whose
relative error is only 0.00126.

§5. Conclusion

Reducing the number of poles is an important problem for converting curve
and surface models, and is needed in CAD data exchanges. Reducing step
by step the degree of a B~zier curve shows that the original parametrization
is less and less optimal. More generally, the approximation of a dense set of
points needs a parametrization adapted to the degree of the approximating
curve while related also to the curve shape. An optimal parametrization can
be called more adaptive than intrinsic since it has this combined dependency.

One can observe that designers, by moving interactively poles, have the
ability to improve easily over most of the mathematical approaches. Doing
so, they produce implicitly the needed adaptive parametrization. An analysis
of the designer's actions leads to the definition of an algorithm called "the
designer's algorithm". This algorithm produces a parametrization with errors
normal to the curve, which is adapted both to the curve shape and the degree
of the approximation. A simple mathematical analysis shows that depending
on the computation of the poles displacements in the designer's algorithm,
the result can minimize the least square distance or a local maxima distance
similar to the Tchebychev minimax. With the local maxima distance, the re-
sult is nearly equioscillating and improves over the least square distance. The
designer's algorithm takes into account easily the extremity conditions needed
for CAD data, and extends in a straight forward way to surface approximation.

Our algorithm seems to present practical advantages that can justify a
more elaborate mathematical analysis than presented here. Mathematicians
may find other and faster ways to produce the adaptive parametrization, and
they may also improve the computation of the displacements of poles to ac-
celerate the convergence or produce a real minimax approximation.
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