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Convergence of Approximations for
Arrangements of Curves

Manuela Neagu and Bernard Lacolle

Abstract. Arrangements of planar objects represent one of the main
topics of computational geometry. We propose an approach that allows
reliable computations on arrangements of curves. This approach is based
on the use of polygonal approximations for the curves composing the ar-
rangement, and the questions to be answered concern the topological and
geometric properties of the approximating arrangement of polygonal lines.

§1. Introduction

Problems on arrangements represent one of the most important topics in com-
putational geometry. Arrangements find numerous applications, ranging from
the design of 2D drawing tools [9] to motion planning, point location, and
visibility problems [5].

Arrangements of hyperplanes, especially arrangements of lines in the
plane, have been widely studied. Satisfactory theoretical results (e.g. the
zone theorem [7]) and algorithmical results have been found. The interest is
now focused on arrangements in higher dimensions, or on planar arrangements
of objects other than lines: segments and (Jordan) curves, to give only a few
examples. Dealing with arrangements of segments is more difficult than deal-
ing with arrangements of lines because of the larger topological complexity
of the cells. The case of curves raises also the fundamental problem of the
computation with curves.

Most of the authors that have dealt with curve arrangements have
adopted an approach based on the use of a small number of oracles. These
oracles provide solutions for elementary geometric operations on curves and
are considered acurately feasible in constant time. Examples of elementary
operations solved by the oracles are the computation of the intersection of two
curves (generally, of cardinality greater than 1), the computation of the ver-
tical tangents to a curve, etc. This approach is adopted in papers presenting
theoretical results rather than implemented algorithms and numerical results
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[6,14,15]. Some papers presenting a more application-oriented approach can
also be found in the literature [9,12].

In this paper, we present a new approach to the problems of arrangements
of curves. We work in a strictly geometric framework, in which the only legal
computations are those performed on linear objects. For this purpose, we
shall use polygonal approximations of the curves defining the arrangement.
Two important questions arise when such an approach is adopted. On the
one hand, what kind of information can we obtain on the given arrangement
of curves if we avoid algebraic equations? On the other hand, which are the
restrictions we must impose on the arrangement of curves in order to assure
that the required information can be provided by the arrangement of polygonal
approximations?

On an arrangement, there are two different types of results. Firstly, there
are topological (or combinatorial) characteristics expressed by the incidence
graph. For example, this graph can be used to find the topological closure of
a given cell or all its neighbours. Secondly, it can be useful to have geometric
information on the faces of the arrangement. That would allow to make a
decision for questions such as the point location problem. This paper briefly
presents results for both aspects of curve arrangements.

We remark that if we want to compute the incidence graph of an ar-
rangement of curves avoiding algebraic equations, then degenerate cases can
not be treated. Indeed, if three curves have a common point, it generally
cannot be found via polygonal approximations of the curves. Similarly, if two
curves are tangent in a common point, algebraic equations must be generally
used to detect the tangency. But on the other hand, our approach provides
a robust algorithm for nondegenerate arrangements. Moreover, the method
we propose detects the "almost" degenerate positions of the curves. If such a
situation occurs, symbolic methods can be employed to obtain the exact local
configuration of the arrangement.

The construction of the polygonal approximations is theoretically possible
for Jordan curves as general as we want. Practically, the input of an algorithm
should be more precise. We have thus chosen to deal with composite B~zier
curves. A subject similar to the one of our paper, but concerning only mutually
nonintersecting composite B~zier curves, has been treated in [2].

Every curve will be approximated by two polygonal lines: the control
polygon and the carrier polygon. Our approach is thus similar to the one
presented in [3,4].

The outline of our paper is the following. In Section 2, we introduce the
polycurve, a composite B~zier curve satisfying certain conditions. This is the
object we shall deal with throughout the paper. We also define the control
and the carrier polygons of a polycurve.

In Section 3, we give basic definitions and notations concerning the simple
arrangements of polycurves and control and carrier polygons. In Section 4,
we deal with the equivalence of arrangements, for which the definition and
sufficient conditions are given. We state the existence of an arrangement of
control polygons equivalent to the one of polycurves.
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In Section 5, we present our results on the convergence in terms of Haus-
dorff distance of the cells of the polygonal arrangements to the cells of the
curve arrangement. In Section 6, we give a relation of inclusion between the
faces of the three arrangements that allows a reliable approach for the point
location problem. Finally, Section 7 concludes the paper.

§2. Polycurves

As we can see in the literature [6,12,14,15], the problems on arrangements
can be addressed for curves which are subject to very few constraints. But
the use of general curves makes the theoretical results unsuitable for direct
implementation. This is one of the reasons why we restrict our study to
piecewise completely convex B~zier curves:

Definition 1. We say that a B6zier curve is completely convex if its control
polygon is convex.

We recall that a curve (or a polygonal chain) is called convex if it is simple
and included in the boundary of its convex hull. A completely convex B~zier
curve is obviously convex.

Definition 2. A polycurve is a simple curve that can be written as a (finite)
union of completely convex B1zier curves.

An example of polycurve is presented in Figure 1. Let B = U2= 1Bi
be a polycurve, where the control polygon of the B6zier curve Bi is Pi =
p(i)p(i) . P .

0 1 in.

Definition 3. To any polycurve B we associate two polygonal chains:
1) P = U[L=lPi will be called the bounding polygon of B;

2) S = Un [P0()PM(i) will be called the carrier polygon of B.

The bounding and carrier polygons are rough polygonal approximations
of the corresponding polycurve. To refine these approximations, we shall
apply successive de Casteljau subdivisions to the composing B6zier curves.
The subdivision parameter is fixed and equal to 1/2. On the one hand, this
value assures optimal (quadratic) convergence of the control polygon to the
associate B6zier curve. On the other hand, the computations are easier and
more accurate in this case. Indeed, if the subdivision parameter is equal to
1/2, then the only arithmetic operations required for the computation of the
new control polygons are additions and divisions by 2.

Let us suppose that we subdivide the curve Bi, obtaining the B6zier curves
B• and Bi'. Then

Bi = (P('),..., P(Q;[0, 1])

= B, (PI),""", P'(); [0, 1]) U Bn(P"IT), " . ., P"$(i; [0, 11) = B U BI'.

Thus, U=IBn and (Uj=Bj) U B1 U Bi' U (UU 2i+lBj ) represent the same poly-
curve. The control and respectively carrier polygons of the two expressions
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Fig. 1. A polycurve at two different levels of subdivision; the control and carrier
polygons are different.

are different: the two polygons associated with a polycurve are not unique,
and they change every time one of the composing B~zier curves is subdivided.
Figure 1 shows an example of a polycurve with its associate control and car-
rier polygons before and after the subdivision of some of the composing B6zier
curves.

§3. Arrangements of Curves

Let r = {Ci} 1 <i<• be a set of Jordan curves. In this section we give the main
definitions related to the arrangement of the curves Ci.

3.1. Arrangement and incidence graph

Definition 4. The arrangement A(F) is the planar subdivision induced by
the curves of r; that is, A(F) is a planar map whose vertices are the pairwise
intersection points of the curves of F, whose edges are maximal (open) con-
nected portions of the Ci 's that do not contain a vertex, and whose faces are
the connected components of R 2 \ r.

The vertices, edges, and faces of an arrangement represent its cells of
dimension 0, 1, and 2, respectively.

Definition 5. Let f and g be two cells of A(F). If the dimension off is the
dimension of g plus 1 and g is on the boundary off, we say that g is a subcell
of f (and f is a supercell of g). We also say that f and g define an incidence,
or are incident to one another.

Using the previous definition, we can present a useful representation of
an arrangement, its incidence graph.

Definition 6. The incidence graph of the arrangement A(F) is a graph G
(V, E) where there is a node in V for every cell of A(F), and an arc between
two nodes if the corresponding cells are incident.
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3.2. Simple arrangements

General arrangements of curves can present degeneracies making their study
rather tricky. If three curves have a common point, this situation is more
difficult to handle than the similar one in the case of arrangements of lines, due
to the complexity of the description of the curves. Moreover, two curves can
have a common point without crossing at that point (impossible for straight
lines). The arrangement is then sensitive to small perturbations.

These are the reasons why, as most of the authors who have studied
problems involving arrangements have also done, that we deal exclusively
with simple arrangements.

Definition 7. The arrangement A(C) is called simple if

1) the intersection of any three distinct curves Ci, Cj, and Ck is empty;

2) if two distinct curves Ci and Cj have common points, they cross trans-
versely in each of these points;

3) the set Uýl 1 Cj is connected.

§4. Topological Approximation

The first question that we answer is: Can we compute the incidence graph of an
arrangement of polycurves dealing solely with the polygonal approximations
of the polycurves? We have proven that if the arrangement of polycurves is
simple, then the answer to this question is yes.

4.1. Equivalence of arrangements

Definition 8 (Griinbaum). Let A 1 and A2 be two arrangements. We say
that they are equivalent if there exists a bijection ýo : A,1 ) A 2 such that
if f and g define an incidence in A 1 , then W(f) and W(g) define an incidence
in A 2.

It is obvious that two arrangements are equivalent if and only if they have
the same incidence graph. On the other hand, we remark that if A 1 is simple
and A2 is equivalent to it, this does not imply that A 2 is simple. Property 2
of Definition 7 is not preserved by the equivalence of arrangements.

Let B = {Bj}j<_j<_, be a set of polycurves. The polycurve Bi is composed
by ni completely convex B1zier curves Bi1j, Bi = U7',Bi,j. Bij has degree

mij,, and its control polygon will be denoted by Pj = P(iJ)P(p(J) ... P(iJ)
We are thus interested in the equivalence of A(B), A(P), and A(S).

Theorem 9. Let us suppose that A(B) is simple.
1) We can obtain by de Casteljau subdivision a set P of control polygons

and a set S of carrier polygons of the polycurves of B such that A(P) and
A(S) are simple and they remain simple after any further subdivision of
the B1zier curves composing the polycurves.
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2) We can obtain by de Casteljau subdivision a set P of control polygons
and a set S of carrier polygons of the polycurves of 1 such that A(P)
and A(S) are equivalent to A(B) and they remain so after any further
subdivision of the B1zier curves composing the polycurves.

We do not present the proof of this theorem here. It is lengthy and
presents no technical difficulty. It uses the geometric properties of B6zier
curves, namely the variation diminishing property, the inclusion of the curves
in the convex hull of its control polygon, and the convergence of the control
(and carrier) polygon to the curve by de Casteijau subdivision.

4.2. Polygonal criteria of equivalence

Theorem 9 assures that we can obtain by de Casteljau subdivision arrange-
ments of control, respectively carrier, polygons providing the incidence graph
of the corresponding simple arrangement of polycurves. Once these two polyg-
onal arrangements are obtained, the computation of the incidence graph of
A(B) can be done by working solely with polygonal objects. We address now
the problem of deciding whether the polygonal arrangements are equivalent to
the curve arrangement by performing operations uniquely on linear objects.

Theorem 10. If the number and the order of all the vertices of A(7P) (re-
spectively A(S)) lying on Pi (respectively S) are the same as the number and
the order of all the vertices of A(B) lying on Bi, for all i C {1,... ,n}, then
A(P) (respectively A(S)) and A(B3) are equivalent.

Thanks to the geometric properties of B1zier curves, this theorem is a
direct consequence of a result given by Vo Phi [15].

Lemma 11. We can decide whether the hypotheses of Theorem 10 are ful-
filled by dealing solely with the control and the carrier polygons of the poly-
curves.

We have established sufficient conditions of equivalence on the two polyg-
onal arrangements. We do not present them here, and just mention that there
are two conditions. The first one assures that card(Bi1,jl n Bi,,j) = 1 when
card(P•1,j, ni P 2,J2) = card(Si1 ,jl nSi 2,h2) = 1, for all il 7# i 2 c {1,... ,n} and

Ak C {1,... ,nik } , k = 1,2. This implies the equality of the numbers of ver-
tices respectively lying on Pi, Bi and ,i in the corresponding arrangements,
for all i C {1,... ,n}. The second condition assures the good ordering of the
vertices in the three arrangements.

§5. Approximation in Terms of Distance

Let 13 = {13i}l<i<n be a set of polycurves, and let us suppose that A(13), A(P),
and A(S) are equivalent. We remark that the problem of the convergence in
terms of distance can be addressed also if the three arrangements are not
topologically identical, but the discussion is more complex in this case and we
do not present it in this paper.
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B1  ....

Fig. 2. Different angles between B1 and B2 at their intersection point.

5.1. Convergence of vertices

The proof of the following lemma is straightforward.

Lemma 12. Any vertex of A(7P) (respectively A(S)) converges by subdivi-
sion to the corresponding vertex of A(B).

We cannot give bounds on the distance between the corresponding ver-
tices of A(B) and A(P) (respectively A(S)) depending solely on the Hausdorff
distance between the B6zier curves and their control (respectively carrier)
polygons. Indeed, it is easy to see that the distance between the intersec-
tion point of the curves and the intersection point of the control (respectively
carrier) polygons depends on the angle between the curves. An example is
presented in Figure 2.

5.2. Convergence of edges

The proof of the following lemma is also straightforward.

Lemma 13. Let eB and ep be corresponding edges of A(B) and A(P), and
let v3, v3 and vp, v.r, be their corresponding endpoints. There exists i E

{1,... ,n} and ji, f E {1,.. ,mi}, ji < f, such that eB C U11 B() Then

6H(eB, ep) < max {d(vB, vp), d(vL3 , vp), m'x6H ( ),(') 7i) }.

It is obvious that a similar relation holds for the edges of the arrange-
ment of carrier polygons. Lemmas 12 and 13 immediately imply the following
statement:

Corollary 14. Any edge of A(P) (respectively A(S)) converges by subdivi-
sion to the corresponding edge of A(B).
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5.3. Convergence of faces

The proof of the following lemma is straightforward.

Lemma 15. Let cp and cB be corresponding faces of A(P) and A(B). Then

6H(Cp, cB) < 6H(6(Cp),6(Ca)),

where b(A) denotes the boundary of the set A.

As a matter of fact, this is a more general result, holding for any two

compact sets in the plane. Thus, this property is fulfilled also by the faces of
the arangement A(S).

The convergence of faces is an immediate consequence of Lemma 12,

Corollary 14, and Lemma 15.

Corollary 16. Any face of A(P) (respectively A(S)) converges by subdivi-

sion to the corresponding face of A(B).

5.4. Polygonal criteria for the convergence in terms of distance

As in Theorem 9 on toplogical convergence of the polygonal arrangements to

the curve arrangement, the results we have presented so far in this section
imply computations with curves. We give here two results which allow us to
estimate the Hausdorff distance between the corresponding cells of A(B) and
A(B) (respectively A(S)) by performing computations uniquely on polygonal
lines. The proofs of the following lemmas are straightforward.

Lemma 17. If B is a completely convex Bizier curve and P = PoP 1 ... P"
is its control polygon, then

6 H(p, B) _< 6H (p, [PoPm]), 6 H ([PoPm], B) _< 6 H (p, [PoPm])•

Lemma 18. Let B1 and B2 be two completely convex Bizier curves and

P. = p(i)P(i) p(') i 1, 2, be respectively their control polygons. We

suppose that

card (P1 n i 2 ) = card (B1 n B 2) = card ([P7)P0 ]n [p(2)p(2))• = 1.

Then

d (P1 n P 2, B1 n 132) _ d 0i'2 , [P)P(1] , [p()p0 ])

and

d([P(l)P()] n [0[(2)p(2)]B, B1n B,2) _• d 0(P nh2, [p(oi)p(1l)] [n [2)p(2)]
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Fig. 3. cL is not included in cp nl cs.

§6. Inclusion of Faces

The results given in Section 5 can be very useful for solving the point location
problem in the case of curve arrangements. In this section, we present a
result that shows how the convergence in terms of distance of the faces of
A(P) and respectively A4(S) to the faces of A4(B) is applied to the mentioned
problem. We use for the set of polycurves B the notations of Section 4, that
is, B = {Bj}i<_<., where Bi = U•f 1 Bjj with Bij completely convex Bdzier
curves for all i and j.

Lemma 19. Let cB be a face of A(B), and cp, cs be the faces that correspond
to cB in A(P), respectively A(S). Let vl,... ,vp be all the vertices of A4(3)
lying on the boundary of c13. There exist ik $ i' E {1,...,n} and Ak E
{1,...,ni}, jk E {1,... ,i,), for all k E {1,...,p}, such that vk = Bik,jk n

i,kj,. Then

p

c~pnl cS c cj~ cp u cs u U (reg(pikjk) n reg(Pi,,j))
k=1

where reg(Pi2 ,) denotes the bounded region enclosed by the polygon Pi,.

This property is illustrated in Figure 3. We remark that in fact the terms
reg(PikJk) n reg(Pi,,j,) are not all necessary. When the B6zier curves BikJk
and B2 •,j, both have their "convex side" oriented either to the interior of the
face c1 or to the exterior of this face, we do not have to add reg(Pik,ik) n
reg(Pi,,j,) to the union above.

§7. Conclusion

In this paper, we briefly present results concerning the use of polygonal ap-
proximations for solving important computational geometry problems on ar-
rangements of curves. We have dealt with two different types of problems,
topological and geometric. For both kinds of problems, the polygonal ap-
proximations represent a suitable tool, providing solutions that do not require
solving algebraic equations.
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