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MIPS: An Efficient Global
Parametrization Method

Kai Hormann and Ginther Greiner

Abstract. The problem of parametrizing 3D data points is fundamental
for many applications in computer-aided geometric design, e.g. surface
fitting, texture mapping, and remeshing. We present a new method for
constructing a global parametrization of a triangulated (topologically disk-
like) surface over a planar region with minimal distortion. In contrast to
many existing approaches which need the boundary of the parametrization
to be fixed in advance, the boundary develops naturally with this new
algorithm.

§1. Introduction

In general, a triangulated set of data points P; € IR® with triangles T; =
A(Pj,y, Pj;, P;j,) and a 2-manifold domain Q C R3, over which the points are
to be parametrized, are given. In most cases the domain is either planar
(QcR?c IRS) or a polygonal mesh with planar facets, The task is now
to find parameter values p; € 2, one for each data point P;, such that the
topology of the point set is preserved, i.e., the triangles in the parameter
domain t; = A(pj,, pjy»pj,) must not overlap.

After determining the parameter values, the interpolation problem can be
written as follows: find a function F : @ — R® with F(p;) = P; [5,8,12]. The
simplest solution to this problem is the piecewise linear function that linearly
maps each parameter triangle ¢; to the corresponding surface triangle T; (i.e.,
F(t;) = T;). This function is typically used in the case of texture mapping,
where color information is defined in the parameter domain and mapped onto
the 3D object to make it look more realistic [1,13]. The function F' can also
be used for remeshing the triangulated data points in order to get a mesh
with regular connectivity, so that multiresolution analysis and subdivision
techniques can be applied [3,10].

We only address the case of triangulated point sets that are topologically
disk-like (i.e., having a boundary and no holes) and thus can be parametrized
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over a simply connected planar domain © ¢ R2. In Section 2 a summary of
the previous work dedicated to this problem is given and the limitations of
the existing methods are outlined. Our method to overcome these limitations
will be explained in detail in Section 3. In Section 4 we show the advantages
of the presented approach, giving some examples of surface approximation
and remeshing with the new parametrizations. The paper concludes with a
discussion of the drawbacks of the proposed technique, and suggestions for
future investigations.

§2. Previous Work

While it is quite clear how to solve the local problem, i.e., parametrizing a
set of points surrounding a reference point R, which can be done e.g. by an
exponential mapping or by projection into an adequate tangent plane at R,
the global problem is more complicated and has been addressed in several
earlier papers.

Bennis et al. [1] propose a method based on differential geometry: they
map isoparametric curves of the surface onto curves in the parameter domain
such that the geodesic curvature at each point is preserved. The parametriza-
tion is then extended to both sides of that initial curve until some distortion
threshold is reached. But this method as well as the one presented in [13] by
Maillot et al. require the surface to be split into several independent regions,
and therefore cannot be seen as a solution to the global problem.

Ma and Kruth [12] project the data points P; onto a parametric base sur-
face S : @ — R?, and the parameter values of the projected points are taken
as p;. The approaches in [3,5,8,14] have the following strategy in common:

1) find a parametrization for the boundary points,
2) minimize an edge-based energy function

1
E=3 > cijllp—psl? (1)

{i,j}€Edges
to determine the parametrization for the inner points.

The edge coeflicients ¢;; can be chosen in different ways. While Floater
chooses them so that the geometric shape of the surface is preserved [5],
Greiner and Hormann set ¢;; = ”—H—_—I—W for some r > 0, as they want to min-
imize the energy of a network of springs [8]. Both methods are generalizations
of well-known results for the parametrization of curves [4,6,11]. Furthermore,
Taubin used the energy function (1) for smoothing polyhedral surfaces [14]
and found r = 1 to produce good results.

A different method is introduced by Pinkall and Polthier in [14], and by
Eck et al. in [3], where the Dirichlet energy of the piecewise linear function F~!
that maps the surface triangles T} to the corresponding parameter triangles ¢;
is considered. It can be expressed as in (1) with ¢;; = %(cot a + cot 3), where
a and g are the angles opposite to the edge FP; in the two adjacent surface
triangles.
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Fig. 1. A pyramid cannot be parametrized without distortions.

In all cases, minimizing (1) is equivalent to solving a non-singular sparse
positive definite matrix system, that is (apart from Floater’s method) even
symmetric. Though this is a comparatively fast way to find a parametriza-
tion, it suffers from the fact that it is not clear how to choose the initial
parametrization of the boundary points. Floater maps them to the boundary
of the unit square using chord length parametrization, Greiner and Hormann
project them into the plane that fits all boundary points best in the least
square sense, and Eck et al. use parameter values lying on a circle. Note the
importance of choosing a convex configuration for the boundary points, since
triangle flipping may occur otherwise. Triangle flipping can also be caused by
negative weights ¢;;, which may happen with the method of [3,14] at sharp
peaks.

These techniques seem to be rather arbitrary and do not take the geome-
try of the boundary points into account. In the next section we will introduce
a parametrization method that yields parameter values not only for the inner
points, but also for the boundary points. Since this method also generates
parametrizations that are “as isometric as possible” (i.e., having minimal dis-
tortion), we will call them: Most Isometric ParametrizationS (MIPS).

§3. MIPS—Most Isometric Parametrizations

Let us briefly review the situation: we are given a set of triangulated data
points P; € R with a boundary and no holes, and want to find a parametriza-
tion, i.e., a set of parameter values p; € R? so that the topology is preserved.
In order to define the quality of a parametrization, we consider the piecewise
linear interpolation function f : R3 — IR? that maps the data points to the
corresponding parameter values, i.e., f(P;) = p;.

As the triangulated surface may be geometrically complex, this function
will inevitably cause some deformation to the shape of the triangles. Con-
sider e.g. the configuration in Fig. 1, which can only be parametrized without
any deformations if the angles 6; add up to 2x. In general, only for de-
velopable surfaces (e.g. planes, cylindrical and conical surfaces) an isometric
parametrization without any distortion can be found. To keep the distortion
as small as possible, we must somehow measure this deformation so that the
best parametrization can be found in a minimization process.
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Fig. 2. An atomic linear map between surface and parameter triangle.
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Clearly, f can be decomposed into atomic linear maps f; (see Fig. 2) that
map a surface triangle T; = A(Pj,, PJI,P ) to the corresponding parameter
triangle t; = A(pj,,pj,,Pj,)- Thus it is sufficient to measure the distortion of
linear maps: if E were such a deformation functional, the best parametrization
could simply be found by minimizing >, E(f;).

While Pinkall and Polthier in [14] and Eck et al. in [3] consider the Dirich-
let energy Ep(f) = 3 [[|Vf]|*> as a measure of deformation, Maillot et al.
propose the Green- Lagrange deformation tensor ||I; — Id||? that describes the
distance of the first fundamental form of f, Iy = Vf!-Vf, to the identity
matrix in some 2 X 2-matrix norm [13].

An energy functional that measures the deformation of a linear function
should have the following properties: it should be

1) unaffected by translations,
2) unaffected by orthogonal transformations,
3) unaffected by scalings,

since the shape of triangles is not changed by these operations. Furthermore,
it is desirable to avoid degeneracies, so we need

4) a functional that punishes collapsing triangles very badly.

Notice that the Dirichlet energy meets the first and second condition
but favors small parameter triangles, contradicting the other two conditions.
Indeed, if the parameter values of the boundary points are not fixed, the min-
imum of that functional is the singular parametrization where all parameter
values p; collapse to one point. The Green-Lagrange deformation tensor also
fails to meet the third and fourth condition and the second one is only fulfilled
if the chosen matrix norm is invariant to orthogonal transformations.

Now, let g(z) = Az + b be an atomic linear map that maps a surface tri-
angle T to a parameter triangle . Note that by introducing a local coordinate
system at 7', this function can be seen as a mapping from R? — R?.

Because of the first condition, the constant part b of the function g should
not be taken into account by the desired deformation functional. Remember-
ing the singular value decomposition of a matrix U'AV = T = ("‘ az), where
01 > 09 are the singular values of A and U and V are orthogonal matrices,
the functional should further depend only on &; and &9, thus fulfilling the
second condition. As the singular values are the lengths of the semi-axes of
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Fig. 3. Decomposition of a linear map g.

the ellipse {Az : ||z||z = 1}, the ratio o1 /02 seems to be a good measure of the
deformation of g that also fulfills the third and fourth condition by punishing
vanishing triangles with co. From Linear Algebra it is known {7] that this
ratio is the 2-norm condition number of the matrix:

ra(4) = Al A7l = -
(P
Since the 2-norm condition number of even a 2 X 2-matrix is rather costly in
numerical computations, we decided to use the condition number based on
the Frobenius Norm || - ||r instead, which still meets the four conditions and
is much easier to handle:

kp(4) = Al A7 r = \/o? + o3y /(2)2 + ()

2 4 42
oi+o5 o1 02 1
=—==—+4 = =Rr(A)+ ——= 2
0102 | ra(4) K2(A) @
_ trace(A*A)
T detA )

From (2) we can see how close kp and k2 are related and that it is no major
difference whether we minimize the one or the other in order to get linear
mappings with low distortion. We will now use (3) to get a representation of
kp that is suitable for numerical computations.

If we decompose the linear function g according to Fig. 3, where {e;, ez}
is the canonical basis in IR?, we have g = ¥ op~1. Further, we have A = 9g =
O8yp~! and a little calculation (see [14]) yields

trace( At A trace(8g'0 4Ep
rr(g) = kp(A) = dei A ) - det 61,[;(degt a;)—l = det (‘gi) (4)
__ cotalal? + cot B]b|? + cot y|c|?
- det 8y )
From (4) and the observation that det 0+ is twice the area of the parameter

triangle ¢, we can interpret the deformation energy xr as the Dirichlet energy
per parameter area.
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Fig. 4. Data set and gray-coded Dirichlet energy of different parametrizations.

Now, by minimizing the deformation functional k = 3. kr(f;), we will
get a set of parameter values p; € IR? that defines a parametrization with
minimal distortion. Note that, as k meets the four conditions from above,
the minimum will only be unique up to movements and scalings. Anyway,
this is not a drawback and can be fixed by retaining two arbitrarily chosen
parameter values.

The main advantage of the proposed approach is that it is no longer
necessary to fix the parameter values of the boundary points in advance.
Instead, the boundary of the parametrization will develop most naturally in
such a way that the deformation energy « is minimized.

84. Examples

We now illustrate the advantages of our new approach by showing some ex-
amples of surface approximation and texture mapping with different para-
metrizations.

In Fig. 4, a triangulated surface with 476 data points and 864 triangles
can be seen. This data set has been parametrized with our new method and
by minimizing the Dirichlet energy according to [3,14] which produced the
best results of all the approaches mentioned in Sec. 2. Since the minimization
of the Dirichlet energy can also be interpreted as a discrete harmonic mapping
(see [3]), we will call the result Discrete Harmonic Parametrization.
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Fig. 5. Gray-coded k deformation energy of different parametrizations.
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We have encoded the amount of Dirichlet energy per triangle as gray
tones (white color signifies low and black color denotes high energy). One can
clearly see that the second method generates great deformations especially
near the border of the parametrization which is due to the arbitrarily chosen
parameter values for the boundary points. This effect is even more distinct if
we look at the xk deformation energy per triangle, which has been gray-coded
in Fig. 5.

Fig. 6 shows how the deformations of these parametrizations affect an ap-
proximating surface. We have gray-coded the mean curvature of the surfaces
in order to emphasize the fact that strong deformations in the parametrization
of the data points cause the surface to wrinkle in these areas (dark color refers
to high absolute values of the mean curvature).

Finally, Fig. 7 shows an example of remeshing. A base mesh of 4 triangles
has been split six times by a regular 1-to-4-split, generating a triangle mesh
with 16,384 triangles and regular connectivity, i.e., all vertices have valence
6 except for the one that refers to the central vertex of the base mesh and
the boundary vertices. The Hoppe mannequin head has been remeshed with
this semi-regular mesh using different parametrizations. The Chord Length
Parametrization, used in the example to the right, refers to (1) with ¢;; =

m (see [8] for details).

§5. Conclusion

We have presented a new method for constructing parametrizations of tri-
angulated surfaces with a boundary. This parametrization can be used for
surface approximation, texture mapping, and remeshing of the original mesh.
The main advantage of our approach is that, in contrast to existing methods,
the parametrization of the boundary data points is done in the same way as
the parametrization of the inner points. Therefore we think that our approach
is more natural than the other methods which set the parameter values at the
boundary heuristically.

Often, the problem of parametrizing triangulated surfaces with holes oc-
curs. So far, we have tacitly ignored this problem, but the proposed method
is capable of dealing with these situations, in principle. Nevertheless, it might
happen that overlapping parameter triangles will be generated at holes, which
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Most Isometric Parametrization
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Fig. 6. Curvature plot of approximating surfaces with different parametrizations.
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Fig. 7. Remeshing with different parametrizations.

can be fixed by triangulating the hole in a preprocessing step and removing
the additional triangles afterwards.

The main drawback of our approach is that it requires the minimization
of a rational quadratic function, while the other parametrization techniques
only need to minimize a quadratic term which can be done by solving a sparse
linear system of equations.

Our future work will therefore be concentrated on developing hierarchi-
cal methods for efficiently solving the problem. The concept of progressive
meshes, introduced by Hoppe in [9] seems to be a good basis for such investi-
gations.
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