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Distance Calculation Between a Point
and a NURBS Surface

Eva Dyllong and Wolfram Luther

Abstract. In this paper, we consider the computation of an Euclidean
shortest path between a point and a modelled curve or surface in three-
dimensional space, which is one of the fundamental problems in robotics
and many other areas. A new accurate algorithm for the distance-calcula-
tion between a point and a NURBS curve and its extension to the case
of a point and a NURBS surface is presented. The algorithm consists of
two steps, and is crucially based on appropriate projections and subdivi-
sion techniques. To solve a nonlinear polynomial system derived from the
classical formulation of the distance problem, the well-known Newton-type
algorithms or subdivision-based techniques first considered by Sherbrooke
and Patrikalakis are used. Their modifications in conjunction with a low
subdivision depth in the presented algorithms yield a verified enclosure of
the solution.

§1. Introduction

The distance-calculation is an essential component of robot motion planning
and control to steer the robot away from its surrounding obstacles or to work
on a target surface. The obstacles may be polyhedral objects, quadratic sur-
faces, which include spherical and cylindrical surfaces or more general surface
types like the non-uniform rational B-splines (NURBS). Most of the well-
known algorithms in the fields of computational geometry, robotics and Com-
puter Aided Design are focused on computing the distance between polyhedra,
as the problem is easier to solve and the answer is sufficient for many prob-
lems. For example, if a free-form designed obstacle like a NURBS surface is
located at a great distance from a moving robot, then it is sufficient in the
next step to know the distance values from certain sensor points on the robot
to the convex hull of the NURBS control points, which describes a convex
polyhedron, instead of the more time-consuming and expensive computation
of the exact distance values. But if the robot approaches an obstacle, more
details are necessary, and fast and accurate algorithms for finding the nearest
point on the NURBS curve or surface are highly recommended.
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There is an abundance of literature to calculate the distance between
convex and non-convex objects. For convex polyhedra, a lot of algorithms
exist [1,4]. Two well-known algorithms, the Gilbert method (GJK, [8]) and
the algorithm of Canny and Lin (CL, [3]) present iterative solutions to the
problem, i.e., both construct a sequence of pairs of proposed distance points
which are then improved by gradient descent. Another wide field consists of
algorithms for general, mainly convex objects [5,7,13]. But in particular for
objects defined by NURBS, there are only a few contributions in the litera-
ture. In [2], Cameron and Turnbull focus on computing the distance between
convex objects defined by NURBS curves or patches, for which the critical
step is the evaluation of the support mapping. The method is based on the
Gilbert-Foo algorithm [7] for general convex objects with adjustments of the
termination criteria like the support mapping for NURBS, which uses deriva-
tives of their basis functions and the Newton-Raphson method (NR solver)
for finding the roots. An algorithm for the computation of stationary points
of a squared distance function is presented in [11]. This problem is converted
to ne polynomial equations with ne variables expressed in a tensor product
Bernstein basis. The solution method uses subdivision relying on the convex
hull property of Bernstein polynomials and minimization techniques.

In this paper we describe a new algorithm which consists of two steps, and
is mainly based on accurate projections and subdivision techniques. In the first
step, the NURBS curve is decomposed into rational B6zier segments. Then
some evaluations of suitable scalar products decide on further subdivision of
a rational B~zier segment. This subdivision is iterated until certain criteria
are fulfilled. In addition, a composition of the new method together with
the classical formulation of the distance problem based on the calculation of
a solution of nonlinear polynomial systems is presented. The algorithm is
extended to the case of a NURBS surface.

§2. Problem Formulation

A NURBS curve C(u) of degree p is a vector-valued function of one parameter
defined by

d(u) = EZ-O Ni, (u)wiPi a K uK b
EZ o Ni,p(u)wi '

where {- = (xi,yi,zi) E lR3}7=0 are the control points, {wi}J7 0 are the
weights, and {Ni,p(u)}7U0 are the pth-degree B-spline basis functions defined
on the knot sequence U = f-i}i'o with {ui = a}P% and {ui === 2~=o ad{i=•i=n+l

Let/PW = (wx, wy, Wz, w) = (x',y',z',w') E ]R4 and H be the perspective map
given by

S ' if w' #0,i H{.P'} = H{(x',y',z ,W')l = ,•(" •, ifw:O
(x', y', z'), if w' = 0.

Applying H to the nonrational B-spline curve in homogeneous coordinates
n

Ow(u) = Nip(u)Pi (1)
i=0
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yields the corresponding NURBS curve d(u), i.e., d(u) = H{dW(u)}.
Similarly to the curve case, we define a NURBS surface using the tensor

product scheme. Accordingly, a NURBS surface S(u, v) is a bivariate vector-
valued piecewise rational function of the form

Zi=0 EZTn0 Ni,p(U)Nj,q(V)Wi~JAiJS(u, v ) - E=° --° Ni,p(u)Nj,q(v)wi,j Pivj

with the bidirectional control net Pij, the weights wij and the B-spline basis
functions Ni,p(u) and Nj,q(v).

For a given point G e R 3 we address the problem of finding a shortest
straight line segment [Q, Db with b E d(u) or b E S(u, v), respectively. We
assume that all weights of the rational curves and surfaces are positive, to
ensure that the convex hull property holds.

§3. Distance Algorithm for a Point and a NURBS Curve

In this section, an efficient and accurate algorithm for distance calculation
between a given point Q and a NURBS curve d(u) is presented, which is a
kind of an adaptive system of solution methods. The extension to the case of
a NURBS surface works analogously.

The algorithm consists of two steps. In the first step, the NURBS curve
is decomposed into rational B~zier segments Cj(u), j = 1,... , np, which can
be realized once in the preparation phase. In [12] Piegl and Tiller present
an efficient algorithm for computing the np B6zier segments using the ho-
mogeneous form given by (1). Thus, our task is to compute the distance
between a point and a rational B~zier curve. After decomposition, the dis-
tances between Q and each endpoint of the rational B6zier segments i (u)
are calculated, and the smallest value is stored as a first rough approximation
to the distance value d. In the second step, the rational B6zier segments are
processed gradually. Let &jk, k = 0,... ,p, be the control points of the j-th
B~zier segment di(u), j E {1,... ,np}. Then, for each Pik, k = 1,... ,p - 1,
the distance to the straight line supporting the line segment l(Pj,o, Pj,p) be-
tween the endpoints PA, 0 and Pj,p is calculated, and for each projection point
R•,k, k = 1,... ,p - 1, on the line, we test if Rj,k belongs to the line segment
l(P,0, P), using suitable scalar product evaluations. If Rj,k ý l(Pj,o, Pj,p)
for at least one k E {1,... ,p - 1}, then the B6zier segment is subdivided into
two Bdzier segments, for which the second step of the algorithm has to be
started again. Otherwise, the algorithm tests whether the B6zier segment can
be replaced by the line segment l(f j,0,1fj,p) using the theorem by Wang and
Xu (see Sec. 3.2). If Cj(u) is nearly a straight line, with a given accuracy
E, then the distance between the point Q and the line segment l(Pj,0,Pj,p)
is calculated. The distance d is updated if a smaller value is found, and j is
replaced by j + 1. If Cj (u) is not nearly a line segment, the following scalar
products

Sk := - fijj) - (Ak - Al) for k = 2,...,p- 1,
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Fig. 1. Convergence of the algorithm.

are calculated. If all Sk _> 0, i.e., all Pik, k = 1,... ,p- 1, are on the same
side of the line supporting (P3j,o, Pj,p), then the algorithm tests the position of
point Q. Otherwise, the Bdzier segment Cj(u) is subdivided into two segments.
To test whether Q lies in an influence area of the Bdzier segment Cj(u), the
projection point RQ of Q on the line supporting l(.Pj,o, .j,p) is calculated and
its position on the line is checked. If/&Q ý l(f1j,o, _Pj,p), the distances d(o, Pj,o)
and d(tO, Pj,p) are calculated, d is updated if necessary and j is replaced by
j + 1. Otherwise, the B1zier segment has to be subdivided into two segments
to increase the accuracy of the result. Fig. 1 shows how the algorithm works.

The subdivision of a rational Bdzier segment can be continued until the
termination criteria (see Sec. 3.2) are fulfilled or it can be interrupted after
some steps, and afterwards the distance problem can be transformed in terms
of the solution of the polynomial equation

4 - d(u)) -'(u) = 0 (2)

in the variable u, where &'(u) describes the derivative of the curve 0(u). This
is mainly recommended for NURBS surfaces with a large curvature to avoid a
high depth of subdivision. We calculate the roots of this equation using either
the well-known (interval) Newton method, or one of the recently implemented
solution methods briefly described in Sec. 3.3 (see [10]). A diagram illustrating
the outline of the distance algorithms is given in Fig. 2.

input: 0, e(u): n,p, U, •i, w,
decomposition: C(u) "- j(u): p,, k, (i = U . p)

first approach to distance d := min1 mmnn d(d, A o), d(d, P
sub := 0 n, n,

for j=l. nP

yes sub < sub- no
estimation criteria

subdivision of e(u) NP / LP / PP solver
sub++

distance calculation to line segment
update d and list of distance points Dk

output: distance value d, list of distance points Dk

Fig. 2. Outline of the distance algorithm.
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3.1. Subdivision

The subdivision of the control polygon of C (u) determinated by P }k=0
into two B6zier segments with control points {Qo,}Jo and {,-IJ=0 works
in homogeneous coordinates, and reads as follows:

for k = 0 to p do
begin QO := Pf0 ; Qlip-k :=-

for 1 = 0 to p-k-i do
AP, + A'1+1)/2.0 end

Extending the idea from B~zier curve Cf (u) to B6zier surface ,jJ (u, v) by
calling the routine twice, first in u and then in v direction, a subdivision of
Si](u, v) into four B6zier patches is realized (see [12]).

3.2. Termination criteria

In [15] Wang and Xu prove the following theorem:

Theorem 1. For the rational B6zier curve O(u) of degree p,

d(C(u),l(Po,Pp)) < 0 max d(Pi,l(Po, Pp)),1<i~p-1

where (u) = =o Bi,p(u)wi /• i 0 Bi,p((u)wi with the Bernstein polyno-
mials Bi,p(u) of degree p, and

, 10- (1+ max( 1,-1)( max wi)(2P- 1 - 1)

d(C(u), l(Po, Pp)) sup { inf d(C(u), tPo + (1 - t)!p)}.
a<u<b O_<t<l

If after some subdivision steps, d(O, l(Pj,o, Pj,p))) >_ d + d(Cj0 (u), l ( Pj,o, Afij,p)),
or the curve can be approximated by l(-Pjo, fij,p), i.e., d(Cj (u), l(fPj,o, Pj,p)) is
not greater than the desired tolerance e, the subdivision of the segment stops
after this step.

If wi = const, the curve Cj(u) describes a B6zier curve, and the termi-
nation criterion of Theorem 1 is reduced to testing the following conditions:
(1 - 1/2P-1 )d(P-j,k,l(.Pj,o, fP,)) < e for k = 1,... ,p - 1. In addition, for a
B6zier curve the following theorem proved in [14] specifies the number of nec-
essary subdivisions, i.e., after r subdivision steps the curve can be replaced
by the line segments:

Theorem 2. For the B6zier curve d(u) of degree p with control points
1P = (xi,yi, zi)},=o and any given E > 0, let L := maxo<i<p-2{Ixi - 2xj+i +
Xi+21, Iyj - 2 yi+1 +-Yi+21, Izi - 2zi+1 + zi+2 1}, and r := log4 (v/3p(p- 1)L/(86)).
Then, for a < a <3 < b and - log 2(()3 - a)/(b - a)) > r,

d(C(u), l(C(a), C(1 ))) < ,.

If at the beginning of the subdivision the value r can be calculated, then it is
not necessary to perform the termination tests of Theorem 1.
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3.3 Solution techniques and complexity analysis

The distance problem can be converted into a problem of computing all roots
of a system of nonlinear polynomial equations in one or two variables. There
are two techniques designed to solve such a problem in n, variables efficiently;
the projected-polyhedron (PP) and the linear programming (LP) technique,
developed by Sherbrooke and Patrikalakis [10]. They rely on representation
of polynomials in the multivariate Bernstein basis, the convex hull property
and on the subdivision or linear programming technique. Alternatively, the
Newton-Raphson method can be used to find the roots of the nonlinear poly-
nomial equations.

Next, we analyse the amount of time required to execute each step of
the distance algorithm in case of the NURBS curve. The decomposition of
the curve d(u) of degree p into np B6zier segments takes at most O(p . np)
operations, and the first approach to the distance value needs np+1 steps. The
total cost of the distance calculation for np B6zier segments with subdivision
depth of k is in worst case O( 2kp2 • np) independently of the method used
(subdivision-based technique or PP/LP solver) for finding the distance points.
In this case (ne = 1), close to a simple root, quadratic convergence is achieved.

§4. Distance Algorithms for a Point and a NURBS Surface

In the case of a NURBS surface §(u, v), the distance algorithm maintains its
structure. After the decomposition of the surface into np ' nq B6zier patches
Sij (u, v) with control points /'3•' (0 < k < p, 0 < I < q), the first approxi-
mation to the distance value d is calculated taking the minimum of distances
d(Q, Pk~) for k = 0,p and I = 0, q. The termination critera for subdivision of

non-degenerate B6zier patch 9ij (u, v) (Pa, P"j 15" are not collinear) are(P0,0 Pp,0, arear

modified in the following way:
(we~~~o,.,- ij i " j"ij i~j "i~j

-P w,q d Pi,tý , /( P/,0ý, P•,':) ) <- D (wo, , ., Lopjt)d( Pý,t , ( Po~ PP,:)

i0- 0 (P ,
and ( P8 0 pOP8:0)X (Pq P , <0

for all 1 < k < p, 1 < I < q, and e = O,p (where x denotes the cross
product). In this case ij(u, v) can be replaced by a plane segment defined

by 8jPp,0 and POq', the subdivision of qi j(u, v) is stopped, and the distance

between the plane segment and the point Q is calculated. The remaining tests
are performed in the u and v directions analogously to the curve case using
the tensor-product structure of q i,j(u,v). If the point Q does not lie in the
influence area of the B6zier patch qi,j (u, v), i.e., the projections onto the lines

forming the boundary of the triangle defined by P8:0, Pp:o, and P2 "q or defined

by Pp:q, .Pogi' and /3* do not belong to sides of the triangle, the distance

between the point Q and one of the boundary lines §ij (u,v), u E {a, b},
v E {c, d}, is calculated, d is updated if necessary, and the subdivision of
9ij (u, v) is interrupted.



Distance Calculation for a Point and a NURBS Surface 61

If a particular depth of subdivision is obtained, the subdivision of the
B6zier patch can be stopped, and the PP or LP solver for nonlinear polynomial
systems in two variables can be applied to the B~zier patch. The equations
for Sij (u, v) read as follows analogously to (2):

2p-1 2q 2p 2q-1

E Eak,1Bk,2p-1(u)B1,2q(v) = 0 and E E bk,1Bk,2p(U)Bl,2q-l(V) 0
k=0 1=0 k=0 1=0

with
min(p-l,k) min(ql) (p-1) (k )P (q) (

akl = E1 Eq (P 1,t -st k1-t

s=max(0,k-p)t=max(0,l-q) (2k-) (I)

min(p,k) min(q-l,l) (P) p (q-1)(q) q -J

bk,l = E (2Ep) (2q- 1 s,t+l -- s,t ( k-s,l-t

s=max(0,k-p)t=max(0,l-q) k I

The combination of a classical formulation of the distance problem and
the subdivision technique is recommended if a high subdivision depth is ex-
pected, e.g., if r in Theorem 2 is too large in case of a very bent B~zier curve.

§5. Concluding Remarks

The method described in this paper computes the distance between a point
and a NURBS curve or surface. Our goal was to provide a reliable method to
solve this problem. The first few subdivision steps and tests quickly locate the
regions of potential solutions. Then the subdivision can be either continued,
or one of the equation solvers or even a distance-calculation algorithm for
polyhedra can be applied [4,5]. We have developed an interval version of the
PP/LP algorithm using interval arithmetic and considering a correct handling
of roots of order two, suitable modifications of Graham's scan algorithm for
building the convex hull, the revised simplex method by Gass, and an adapted
interval-based subdivision by de Casteljau. The solver has been implemented
in C++ using the library Profil/BIAS (see [9]). This improves the robustness
of the distance-algorithm, assures an interval enclosure of the solution, and
makes it suitable for verification of off-line tasks in path planning.

Some modifications to the algorithms could improve performance, e.g., if
upper bounds on the derivatives of order two for the curve or surface are known
[6]. But doubtless our NURBS-based algorithm will be slower, e.g., compared
with our algorithms [4,5], where we deal with the objects as polyhedra. In a
more complete distance tracking system, such as a manipulator in a complex
environment, a progressive switch from a spherical or polyhedral enclosure of
the objects to NURBS surfaces is recommended, especially if contact problems
are investigated.
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