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Local Approximation on Manifolds Using

Radial Functions and Polynomials

Jeremy Levesley and David L. Ragozin

Abstract. The main focus of this paper is to give error estimates for
interpolation on compact homogeneous manifolds, the sphere being an ex-
ample of such a manifold. The notion of a radial function on the sphere is
generalised to that of a spherical kernel on a compact homogeneous man-
ifold. Reproducing kernel Hilbert space techniques are used to generate
a pointwise error estimate for spherical kernel interpolation using a posi-
tive definite kernel. By exploiting the nice scaling properties of Lagrange
polynomials in the tangent space, the error estimate is bounded above by
a power of the point separation, recovering, in particular, the convergence
rates for radial approximation on spheres.

§1. Introduction

There is currently significant interest in approximation on spheres, related
to many interesting geophysical problems. There are a number of different
approximation methods currently available on spheres, including wavelets [3],
splines [1], and the subject of this paper, radial functions (sometimes called
spherical splines) [3,6]. Error estimates and convergence rates for radial ap-
proximation on spheres, of an optimal nature, are recent in vintage [5,4], and
rely on some technically demanding mathematics. In this paper we build on
an idea of Bos and de Marchi [2] in order to provide convergence rates for ra-
dial interpolation on a much wider class of manifolds: the reflexive, compact
homogeneous spaces. We will conclude the paper by proving a local spherical
harmonic polynomial approximation result on spheres.

Let Md be a d-dimensional compact manifold with a metric d(., .) which
possesses a transitive group G of isometries. The group acts transitively in
that for every x, y E Md, there exists g E G such that gx = y. If, further-
more, there exists g E G such that gx = y and gy = x, then Md is termed
reflexive (for more details see [11]). Such a manifold is a reflexive, compact,
metric, homogeneous space. We comment that we can always embed Md in
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some higher dimensional Euclidean space I:d+r, the group G being a compact
subgroup of the isometries of Rd+r. We assume that the metric d(., .) on Md

is inherited from some Euclidean embedding.

We will be interested in interpolation on Md using continuous zonal ker-
nels k(., .) which have the property that k(gx, gy) = k(x, y) for all x, y E Md

and g E G. Such kernels are natural generalisations of radial functions,
which are functions only of distance, which is itself G-invariant. Given a
set {XI,... ,XN} C Md and data fi,... , fN E IR, we seek a function of the
form

N

Sk(X) Zcik(x, xi)

such that sk(xi) = fi, i = 1,..., N.
Given the data fi = f(xi), i = 1,..., N, we wish to bound the pointwise

error between sk and f at x C Md. We make no assumption on the data
points except that they satisfy a point separation criteria in some subset of
Md (see Section 3).

In Section 2 we will introduce some necessary harmonic analysis on Md,
discuss the notion of positive definiteness on Md in brief, and give a standard
error estimate, which we will use in Section 3 to obtain convergence rates. In
Section 4 we prove a Whitney type error estimate for local spherical harmonic
approximation on the sphere.

§2. Harmonic Analysis and Error Estimates

For a more complete version of the brief description we give here, see [10,11].
Let fld+r be the degree n polynomials in Rd+r, the space in which Md is
homogeneously embedded. Then, let P,, (the spherical polynomials of de-
gree n) be the restriction of these polynomials to Md. Furthermore, let
7-Hn := Pn n 7_1, where the orthogonality is with respect to dy, the unique
normalised G-invariant measure on Md:

f',g]:= JMd fg dy.

Then, we can uniquely decompose 7-4n into irreducible G-invariant sub-
spaces E,1 , each of dimension dnj, j = 1,... , h, resulting in the G-invariant
decomposition

L 2 (Md) = D- =o G= .

Let Xnj be the orthogonal projection onto 7np, n = 0, 1,..., and j =

1,...,hn, and Tny(.,.) be the kernel of this projection. We will consider
interpolation using strictly positive definite kernels of the form

cc dn

k(x,y) = E 1 anj7Znj(x,y),
n=O j=1
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where anj > 0, n = 0,1,..., j = 1,..., hn, and

o0 d.

E E dnjan<oo. (1)
n=Oj=l

We will approximate functions from the Hilbert space

00 dn

W = {f e L 2(Md): 11f112 := Z Z IXnjfII/anj <OO},

n=O j=1

where I1" 112 denotes the L 2(Md) norm. The associated inner product in W is

o0 dn

(f, g) := ý[Xnjf, Xnjg] /anj.
n=O j=1

The condition (1) ensures that point evaluation is a continuous linear
functional in W. It is straightforward to show that k is the reproducing kernel
for the WV: f(x) = (f, k(x, .)), f E W, x E Md. An immediate consequence of
the reproducing kernel property is that sk is the interpolant of minimum W
norm. For, if g is another interpolant,

N N(sk - 9, S) = i ,(f - sk, k(x,,.) = i (f(xi) - sk (Xi)) = o.
2=l 1=1

Therefore,

(g, g) = (g - Sk + Sk, g - Sk + Sk) = (g - Sk, g -Sk) + 2(g -Sk, Sk) + (Sk,Sk)

= (g - Sk,g - Sk) + (sk, Sk), (2)

and the norm minimisation property is established. Now, following the stan-
dard arguments, see e.g. [8,9], we have, using the fact that Sk interpolates f
at Xl,...,XN,

If(x) - sk(x)l = 1(f - Sk, k(x, .)I
N

= I(Sf-s•, k(x, ) +Z/-3ik(xi, )1

i=1

N

= II( - sklllk(x, -) + Y', I3k(xi,,.)l

i=1

N

< Itf Itlk(x, -) + O /k(xi, ")II
i=1
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for arbitrary 0ij, i = 1, ... , N, where we have used (2) in the final step. Our
final error estimate follows from the fact that

N N N

I[k(x, -) + Z ,ik(xi,")II = (k(x, -) + ZI ik(xi, .), k(x, -) + 0i k(xi,"))½
i=1 i=1 i=1

N N

=(k(x,x) - 2Z Oik(x, xi) + Zi3j3k(xj, xj)).
i=1 i,j=l

Defining

N N

P(x,xi,. .. ,XN) :=I. inf Ak(x,x) - 2Z-3ik(x, xi) + E 3iSjk(xi,xj))2
i=1 i,j=l

we sum these results up in

Theorem 1. Let sk be the k-spline interpolant at x 1,.. •, XN E Md tof E W.
Then, for every x C Md,

IfPX) - sk(X)l < [jfjjP(X, X1,.. ,XN).

§3. Convergence Rates for Radial Kernels

In this section we shall give pointwise error estimates in terms of the point
separation

p:=max min d(y,xi),
yEV i=l,..,N

where V C Md contains x, the point at which we are measuring the error. As
we shall see later in this section, producing a pointwise convergence rate from
the error estimate of Theorem 1 requires us to bound Lagrange polynomials
related to a subset of the interpolation points. Efforts to produce convergence
rates on the sphere foundered because it is difficult to bound the Lagrange
polynomials for spherical harmonic interpolation as the interpolation set, with
a fixed number of points, scale towards x. The early error estimates of [3],
of O(p), were the best known until recently, and only required bounding of
the constant Lagrange polynomial for a single point. Light and v. Golitschek
[4] proved boundedness for all polynomials on Sd, d > 2, and consequently
achieved Q(pr) approximation for radial kernels with 2r continuous derivatives
on the sphere.

A very simple proof of the result of Light and v. Golitschek was given by
Bos and de Marchi in [2]. What we will do is introduce an analytic coordinate
transformation, and construct Lagrange polynomials in the tangent space,
which is a d-dimensional Euclidean space. We will quote a result which uses
scaling arguments in Euclidean space which are easy to perform, observing
that distance on the manifold and in the tangent are comparable.
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Fig. 1. Coordinate chart at x.

Let x E V C M. We shall assume the existence of a Cm-chart ((Wo, 0)
with an open subset U C Uo satisfying the following (see Figure 1):

1) O(U) = V with ?P(O) = x,

2) (o = {y - z: y,z E U}.

These conditions ensure the validity of Taylor series arguments which follow.
Also, since U is precompact, 0 is bi-differentiable and the metric d is assumed
boundedly equivalent to the Euclidean distance on IRd+r,

cilly - zli -< d(V)(y),4(z)) < c21ly - zII y,z E U.

Let v1 , ... , vQ = V n X be the interpolation points in V, and redefine
p :supv E Vmini=l1_.,Q d(V, VQ). Let ui = ¢-1 (vi), i = 1,... ,Q. Then, from
the previous equation we have

S:= sup min Iu - U 11 < p/cl. (3)
uCU i~l,...,Q

It is shown in [7] that provided p and hence q are sufficiently small to
guarantee that Q > t, we can make a selection of interpolation points v.,..., vt
(assuming a convenient ordering of the points), where t = dim(Hnd _1), such
that the Lagrange polynomials pi,.. . ,Pt for ul,... ,ut are bounded at the
origin:

A (0) <ý CL, i =1.,t,(4)

where CL is independent of i and p. Furthermore, ul,... , ut are all contained
in rlBb := {77w : jfwfj < b}. We are now ready to prove the main theorem of
this paper:
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Theorem 2. Let R :R --ý R and k(.,.) = b(d(.,-)) be strictly positive
definite, and 2r-times continuously differentiable in each variable. Let x E
S C M. Suppose that the interpolation points xl,..., x. satisfy

sup min d(y, xi) = p.
YES i=l,...,n

Then for all sufficiently small p, if sk is the k-spline interpolant to f C W,

If(x) - sk(x)l : C[if lIpT,

where C is independent of p.

Proof: First we now choose the coefficients /3 1,...... n (appearing in the
statement of Theorem 1) as follows. Let fPi = pj(O) if xi = P(uj) for some
j = 1, ... , t. Set Oi = 0 otherwise. This choice of coefficients is made since

t

Ep,(O)q(uj) = q(O), (5)
j=1

for all q E jd . Then,

P(xx,... , xN) < [O(d(¢(o), V,(O))) - 2 E pj((0)0(d(0(0), 0(uj)))

+ -- pi(O)pj(O)q5(d(Vb(uj), Vb(uj)))] 1/2(
i,j=l

Since O(d(., .)) is 2r times continuously differentiable in each variable, for
fixed w E U we may expand

(d(O(w),P(z)))= E c•'(z - w)' + R' (z), z C U, (7)
lal<2r

where R' is a Taylor series remainder satisfying

Rw (z) :5 CRIJz- _W1[2r, (8)

for some constant CR independent of z and w. Putting z w in the above
expansion we see that

co, = 0(0). (9)

Putting (7) into (6) gives

j=l ]la<
2

r

t1/

+ EPi<O)p(0)( E c" (uj-ui) + R(uj)) .
IaI<2r
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Using the polynomial reproduction (5), we get

P(X, XI,..XN) 0 - (0) - 2 Yp ( 2r•%

j=1
t

+Zpd~o)( E cui (-ui)") (10)
i=1 lal<2r

t 11/2

+ pi(O)p•j(O)Ru(u)]
i,j=l

where we have used (6) and (9) in the above argument.
Now, since the distance function is symmetric, for any u, w E Rd,

O(d(O(u),O(w1)))= E c(u - 1w) + Rw (u)
Iol<2r

= Z c( - u' + Ru(w).
Ia 

2r2
[al<2r

In particular, with w = 0 we get
Z cu(-u)" = E c°(u)+R u) - Rur(0).

laI<2r IaI<2r

Substituting the last equation into (10) and again using (5) gives

P(X, Xl,. .XN) 0<[ (0) - 2 Epj(O)RO~r(uj)

j=1
t

+Zp%(O)( EZ 0 02u~ Rr (U) 2,(0)
i=1 lal<2r

t 1i/2

+ � pi(O)pj(O)Ru(uj)]
i,j=l

t

_ [ pj(0)(R2r(Uj) + Ru(0))
j=1

t I1/2
÷ : pi(O)pj(O)Rur(Uj)J

i,j=l

tt< CR?7( max {lui- 1IIII}) • Ip2O)+12 +pO)l
i,j=1

i ,j =
<_ CpT,
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using (3), (4) and (8), recalling that ul,... ,ut are contained in an 77 _• p/c,
scaled ball of radius b. Substituting this result in Theorem 1 concludes the
proof. 0

§4. Whitney-type Estimates

We will now use the coordinate system suggested by Bos and de Marchi [2]
to prove Whitney type estimates for approximation using spherical harmonics
on IRd. This result answers a question posed by L. L. Schumaker during the
conference for which these are the proceedings. For x = (x2,. .. , Xd+l) E Rd,:~~~- R= ( _ d-t1 X2)1/2 ,
define E) •• __+* Sd by O(X2,...Xd+I) _ ( .i=2 xi ,X21,''',Xd+I)"

This is a smooth parametrisation of a neighbourhood of el = (1, 0,... 0) E Sd.

As long as --,i=2 < sin 2 p, then d(el, 0(x)) < p.
Without loss of generality, we shall consider the approximation of a func-

tion f E Ck(Sd), using spherical polynomials, in any spherical neighbourhood
XP of el, where maxycxp d(el, y) = p < 7r/2. In fact, we will prove

Theorem 3. Let f E Ck(Sd). Then, there exists a degree k harmonic poly-
nomial Pk-I such that, for every 7r/2 > p > 0,

max If(x) - Pk-l(x)I • C(f)pk,
xEXp

where the constant C(f) does not depend on p.

Proof: The crucial element of this proof is that the coordinate mapping 0
maps polynomials of degree k in Rd, the tangent plane at el coordinatised
by X2,. . . ,xn+, to polynomials of degree k on the sphere. Since f 0 E E
Ck(e-1XP), we can perform the multivariate Taylor series expansion

f o O(x) = E c~x' + Rk(f,x), (11)
Icl<k

where Rk(f, x) is the remainder satisfying

Rk(f,x) 5 C(f)(max 01-'(y)I)k. (12)
yEXp

Letting 0 = O(x), and defining the degree k - 1 spherical polynomial

Pk-l(O) :=-- c(e)(O-(0))a = 5 C'X'
ja<k Ial<r

equations (11) and (12) tell us that

max If(O) -Pk-1(O)1 • C(f)(max 11-1 (y)D)k.
OEXp -- yEXp

The result follows because maxYExp I0-l(y)I <_ P. El
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