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Interpolating Involute Curves

Mitsuru Kuroda and Shinji Mukai

Abstract. We propose a straightforward method for designing an in-
terpolating involute curve whose radius of curvature is piecewise linear or
quadratic with respect to winding angle. Designers can specify and con-
trol the curvature radius profile to a certain extent. End radii of a circle
involute are solved in terms of end tangent angles, and a G1 involute curve
is derived by the Hermite interpolation. For G2 and G3 involute curves,
relevant nonlinear equations are solved by the Newton-Raphson method.
NC machines with an involute generator can draw the resulting curves
with "reduced data".

§1. Introduction

We present a new method for designing two kinds of smooth interpolating
curves, smooth in the sense of consisting of less segments with continuous
monotone curvature radius plot. In the method, we derive a G2 (curvature
continuous) involute of circular arcs or a G3 involute of circle involute arcs
through describing its radius of curvature that is piecewise linear or quadratic
with respect to winding angle.

"The most important curve in engineering is arguably the circle involute
... it has played key historical roles in a variety of scientific and technological
applications" [3]. This curve has excellent shape properties which make it
interesting for CAGD (Computer Aided Geometric Design). One can draw the
involute curve manually with simple equipment if necessary. NC (Numerical
Control) machines with an involute generator are available [1,5].

In our straightforward design method, designers can specify tangents and
curvatures at junction points, and control the curvature profile directly to a
certain extent. End radii of a circle involute are solved in terms of the end
tangent angles, and so an interpolating G1 involute curve is derived span by
span by the two-point Hermite interpolation. For G2 and G3 involute curves,
continuity conditions and other requirements lead to a system of nonlinear
equations. We solve this equation system by the Newton-Raphson method,
using initial values from the conventional C2 cubic spline curve. We obtain
examples of the curves satisfying additional requirements, and illustrate the
properties of the newly developed curves.
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Fig. 1. Circle involute and its evolute.

§2. Circle Involute Arc

A planar curve r(s) is expressed as

r(s) =po + (Cos9 ds, -oo < 0< , (1)

where s is arclength from the starting point Po and 0 is a winding angle (the
angle between tangent vector and the direction of the x axis). The following
relations hold among the curve r, unit tangent vector t, unit normal vector n
and radius of curvature p:

d2r dt dO 1 (2)

ds 2  ds ds p

The radius of curvature of circle involute is proportional with respect to 0:

ds
P= - =P.+0(-00o), (3)

Pb -- Pa
-- P.o -= const.,

=(00) = P., P(01) = Pb,

where yi is the radius of circular arc that is the evolute of r, and A is the
forward difference operator defined by Azi =- zi+ -zi. We change the variable
of the expression (1) from s to 0 by the relation (3) and integrate it:

01
APo = 1 ptdO = pano + p(tl - to) - Pbnl, (4)

r( 00) = po, t(Oo) = to, n(Oo) = no,

r(01) = pl, t(ol) = t a, n(01) = 1i.
The vector equation (4) is understood easily as in Fig. 1.
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The expression (4) is a system of equations with respect to unknowns Pa and

Pb. We can solve this as follows:

I'cos¢0
Ap 0 --L 0  sin 0 '

Pa - A0 0 cos(0i - 00) + sin(0o - 00) - sin(Ol - 00) Lo,-2 + 2 cos AOo + A 00 sin A00  (5)
AG0 cos(Oo - Oo) + sin(0o - O0) - sin(O1 - O0) Lo.

Pb + 2 cos AOO + AO0 sin AOO

Since the involute arc is given in terms of start and end points as well as cor-
responding tangent vectors by the expression (5), we can obtain a G1 involute
curve by the Hermite interpolation which satisfies the equations

r(O)=pj, i=0,1,...,n. (6)

Radii of segments of the evolute of r are rewritten as

= cos(Oi - 0i) - cos(Oi+I -- =0, n 1.
-2•+2- csAO +AOisinA-iLi,

§3. Interpolating G 2 Involute Curve

We can also derive an interpolating G2 involute curve of circular arcs. Using
the equation (5), we can solve the following nonlinear equation system (7)
with respect to unknowns 00, 01,..., 0, by the Newton-Raphson method:

AP=_-P(-Oi)= P(+Oi), i=l1, 2, .. ., n -1. (7)

However, the Jacobian matrix necssary for the method makes a programming
code long and convergence relatively slow. Therefore, from the practical point
of view, we prefer to solve the following equations (8) based on the equation (4)
directly. Adding unknowns P0, Pi,..., P, to the previous ones 00, 01, ... 0,
we get

pini + p~iAti - pi+lni+l = Li' cos Oi i = 0, n - 1, (8)
( sin Oi )

Ap•
Pi =-ji, i=O0, 1.,n -1.

Fig. 2 shows an example of interpolating G2 involute curves and its profile
of curvature and radius of curvature. Initial values were from the conventional
C2 cubic splines. The Newton-Raphson method converged after three itera-
tions. In spite of the unpleasant configuration of data points, the curve derived
is quite smooth. Its evolute curve (circular arcs) is GC continuous except for
two cusp points that correspond to extremal points of the radius of curvature.
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Fig. 2. Interpolating G 2 involute curve.

§4. Interpolating G' Involute Curve

Expressing p as a quadratic B-spline function of variable 9, we extend the
interpolating G2 involute curve in the previous section. The radius p(O) is C1

continuous. The arclength s is cubic with respect to 0, since p = ds/dO and
p(O) is quadratic. In this case, we get the indefinite integral

r = fptdO = -pn + /it + vn, (9)

A dp V d2 P
dp d92  -const.

Using (9) span by span, we derive the continuity conditions

pini--Pi+lni+l-/-•ti-tzi+iiti+l--ini+ini+l = Api, i = 0, 1,..., n - 1, (10)

A=_P(Oi), Pi= Lp i=O, 1,...,n,
dO o=oi

d2P oIo
vi= , i=0, 1,..., n-1.
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Based on these conditions, we are going to derive a set of equations with
unknown parameters of p(O) and solve. We use the following notation in p-O
space:

1) Knots: 0-1, 00,..., On+,t, where the end knots are of multiplicity 2.

O-1 = 00, 0n+1 = On.

2) de Boor ordinates [2]: do, dl,..., d,+l, where di corresponds to the
Greville abscissa (Oi_1 + 0i)/2.

3) B~zier ordinates [2]: bo, bl,..., b2n.

For easy manipulation, we break down the non-uniform B-spline function
p(6) into the following quadratic B~zier functions with local parameter t:

p(0) = (1 - t)2b2i + 2(1 - t)tb2i+l + t22b2i+ 2, (11)

AO- -

= di+lAOi- + diAOi i0=, 1,...,n,
AOi-1 + AOi '

b2i+1 = di+1, i 0 , 1.,n - 1.

From (11), we obtain

p~zb2 2,bi
pib2i, Pi-AO i 0, 1,...,n,

2A 2b2iu-(AOi)2, i=,1.. n 1

We solve the equations (10) with unknowns 0, 01,..., On, do, di,... , dn+ by
the Newton-Raphson method, using initial values from the conventional C2

cubic splines. The number of equations is 2n, while the number of unknowns
is 2n + 3. Accordingly we can give 3 more additional requirements. Since the
radius of curvature p(O) determines a unique curve shape, we can specify and
control an interpolating curve by the control polygon (Greville abscissae and
de Boor ordinates) of p(O). Therefore the curve includes circular arc, circle
involute and involute of the circle involute because p(O) is a quadratic B-spline
function.

Fig. 3 shows an example of an interpolating G' involute curve with the
same data points and the same end tangents as in Fig. 2. The computation
converged after four iterations. The evolute of this curve has cusp points
within segments, since the radius of curvature is quadratic, while the evolute
in Fig. 2 has cusp points only at junction points. The evolute of the evo-
lute (circular arcs) has three cusp points. The curvature profile shows the
smoothness of this G 3 involute curve.
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Fig. 3. Interpolating G3 involute curve.

§5. Some More Numerical Results

To illustrate the properties of the newly developed curve, we show some more
examples of the curves. The same data points are used in Figs. 1 to 5.

The G2 involute curve is practically more important than the G 1 and
G 3 ones. Accordingly, in Fig. 4 the G 2 involute in Fig. 2 is compared with
other curves: (a) the G3 involute curve with the same end tangents in Fig. 3,
(b) the conventional C 2 cubic spline curve which is used as an initial curve
by the Newton-Raphson method, and (c) a G1 biarc curve derived by mini-
mum difference between curvatures of two arcs [4]. The labels "G2" ,"G 3' or
",C2, in Fig. 4 point out which side the corresponding curve passes through.
Small circles in Fig. 4(c) are centers of circular arcs. It is understood from
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Fig. 5. G 2 involute including a circular arc.

observation that the involute curves are quite smooth.

Fig. 5 illustrates a G2 involute curve with additional requirements, which
includes (a) a circular arc PoPl and (b) a circular arc PIP2.
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§6. Concluding Remarks

We proposed the design method of up to G3 interpolating curve as an involute
of circular arcs or an involute of the circle involute arcs. This straightforward
approach provides a tool for the construction of planar curves consisting of
segments with monotone curvature radius plots of constant sign. Available
NC machines with an involute generator are able to draw the objective curves
with reduced data.
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