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Analysis of Scalar Datasets on
Multi-Resolution Geometric Models

Alexandre Gerussi and Georges-Pierre Bonneau

Abstract. Recently, multi-resolution methods based on non-nested
spaces were introduced to allow the visualization and approximation of
functions defined on irregular triangulations [3,4,5]. This paper comes back
to these methods and shows more precisely how the subdivision/prediction
/correction scheme of ordinary wavelet-based multi-resolution analysis
(MRA)is also present in that framework. As an illustration, it is demon-
strated how it can be applied in two of the classical issues of MRA: com-
pression and level-of-detail editing. We also show that the framework
can be used for the analysis and approximation of scalar data defined on
meshes with arbitrary topology, thus extending our previous results in the
plane and the sphere. Here again, the link with the corresponding classical
multi-resolution scheme of [6] as well as decimation methods is made.

§1. Introduction

In the last few years, the problem of simplifying huge 3D triangular meshes,
for the purpose of e.g., visualization, transmission or storage, has received
considerable attention. Among those works, two major approaches can be
found. In the case of regular meshes, the use of a wavelet-based framework
has proven to be a powerful solution [6,9,14]. On the other hand, when meshes
are not regular, the approach has been to simplify the mesh by applying
a sequence of elementary geometric simplification operations, such as vertex
removals, edge collapses or triangle collapses, the order of removal being driven
by a greedy algorithm [1,8,11]. We refer to this latter approach as a decimation
approach.

This paper is concerned with the simplification of data that is defined
on a surface by means of a triangulation. This topic is closely related to
surface simplification, since a triangular mesh can be seen, at least locally, as
the graph of a piecewise linear function supported by a triangulation. Here
again, when the surface is well-known, for example a plane square, a sphere,
a cylinder, etc., several wavelet based approaches have been employed [9,14],
with regular underlying meshes.
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In [3,4,5] the concept of non-nested MRA was introduced and applied
to the approximation and progressive visualization of piecewise constant or
linear functions defined on arbitrary planar or spherical meshes. In Section 2,
we investigate the relationship between the non-nested framework and irreg-
ular subdivision. Examples of compression and level-of-detail editing in that
framework are given in Section 3.

Section 4 focuses on the approximation and visualization of functions
defined on triangular meshes with arbitrary topology. Here, an additional
difficulty is that the surface which supports the function is also altered by the
approximation process. Like in the case of surface simplification, a wavelet
approach can successfully be applied when the original mesh has subdivision
connectivity [6,12]. Otherwise, in an irregular setting, a decimation approach
is usually employed, and the function is approximated during the simplifica-
tion process [1,11]. We show how to apply our framework to functions defined
on such general meshes. We will see that it makes the link between the
wavelet-based approach available for subdivision surfaces and the decimation
model. As in our previous papers, the function in its multi-resolution form
is described by a coarse approximation defined on the simplified mesh, and
a sequence of detail coefficients that are used for the reconstruction of the
function on every LOD up to the original mesh. Our scheme is fully bijective:
The function multi-resolution representation has the same size as the original
one. The approximation process performs L2 approximation of the data, but
other types of approximation are also possible.

§2. Non-Nested Framework and Irregular Subdivision

In Section 2.1 we briefly review the non-nested decomposition scheme de-
scribed in [3,5]. Section 2.2 makes the link with the notion of irregular subdi-
vision.

2.1. Decomposition scheme

For simplicity, every space is supposed to have finite dimension. Let Q be a
measurable domain and V', i = 0,..., N, a sequence of subspaces of L 2(Q).
These spaces do not have to be nested but will in general be"growing" in the
sense that dim(Vi) _• dim(Vi+l). Now let f = fN be a function in the finest
subspace VN. In classical MRA, the spaces are nested and the link between
VN-1 and VN is made by taking a complementary space WN-1 of VN-1 in
VN, that is

VN = VN-
1 

(D WN-1.

Now if we write fN = fN-1 + gN-1 according to the space decomposition,
fN-1 can be seen as an approximation of fN in VN-1, and gN-1 as the detail
needed to recover the original function from its approximation. By repeating
the decomposition, one obtains

fN = fo + go + + gN-1

which corresponds to the space decomposition VN = V
0

O E o N-1 Wi.
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Notice that in this case fi = PVi (fi+i), where Pvi is the projector on V' with
direction Wi. We return to the general case and suppose that a linear "pro-
jector" P' : v+ 1 -• V' is given. To avoid technical details, these projectors
are required to be surjective, but the results in this paragraph also hold if
this is not the case. Let W' be the kernel of P', and VP be a complementary
space of W? in V'+'. We now observe that the restriction of Pi to 0' is a
bijective operator, having the same range as Pi. Thus if fi = P'(fi+1 ) and
gi = Q'(fi+i), where Qi is the projector on W' (defined by the choice of V0),
the following reconstruction formula holds:

fi+I = Inv(Piv,)(fi)+gi. (1)

Again, by iterating this decomposition, we obtain a coarse approximation

fo = pO o ... o pN-l(fN) and "detail" functions go,... ,gN-1.
We now take a look at the reconstruction process. Denote by S' the

inverse of Pl-i Si : V' -4 V- C Vi+l. The complete coarse-to-fine reconstruc-

tion formula is obtained by iterating the reconstruction formula (1):

fN = SN-1 O.. oSO(fO)+SN-lO . OS1 (gO)+"'+NSN-l(gN-2)+gN-1 . (2)

2.2. Approximating spaces, subdivision spaces and scaling spaces

We are going to see that the previous scheme can actually be considered in
two different ways. Until now, it was implicitly assumed that the spaces
V' were playing the role of the scaling spaces in classical MRA. Under this
assumption, we conceptually have a really non-nested framework; if the spaces
were nested, the operators S' would be the identity (formally injecting V' in
Vi+1). However, we will not call them scaling spaces but approximation spaces,
and keep the term "scaling" for other spaces that are going to be defined below.

In the non-nested framework, one loses the notion of subdivision (or cas-
cade algorithm). However, looking at things slightly differently allows subdi-
vision to fit into the non-nested scheme. To show this, consider the operators
S as subdivision operators, and call the spaces V' subdivision spaces accord-
ingly. This means that we start from a function fo C V° and iteratively
subdivide it into fl, f2,... fN using the formula fi+1 = Si(fi). The notion
of subdivision used here is very general. In that context, classical regular
or semi-regular subdivision schemes would give rise to a nested sequence of
subdivision spaces. But completely irregular schemes would require the non-
nested framework to be fitted in. The use of non-nested MRA was introduced
in [2], and was later applied to triangular schemes in [3,4,5]. Recently, another
approach on general irregular schemes was proposed in the work of Sweldens
and Guskov [10,13].

We now define the scaling spaces. Like in classical MRA, they are the
spaces containing the limit functions resulting from the subdivision process.
Since very little is known about the convergence of such schemes, we won't
push the subdivision to infinity, but restrict ourselves to an integer N. This
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makes sense since, when using such a framework, one usually starts from an
initial triangulation TN which is coarsened to To. This contrasts with the
traditional approach in subdivision where one starts from a base mesh and
subdivides it according to a systematic rule.

The scaling spaces, for i = 0, ... , N, are defined as

ViN = {fk'N I E Vi},

where f.,N = Si,N(fk), and SiN = SN-1 o ... o S". This operator carries
functions in V' through N - i subdivision steps to functions in Vi,N.

Notice that, for every i, ViN C VN and moreover, that ViN C Vi+lN.

Now fix a basis (V') for Vi and (0') for W'. If (a') and (b') denote the coor-
dinates of fi E VP and gi C W' with respect to these basis, the reconstruction
formula can be re-written as

N-1
f- a N + ZN)

k i=j k

for any j 0,...,N, which corresponds to the decomposition of fN in
VN,N = VN (using the same notations as above: AN k' - 0sJ'g(p, and
0i,N = Si+1,N(oi))

kk

Although formally identical, considering the V2 's as approximation or
subdivision spaces changes the aspect of several questions. For example, in
the problem of error measure in the context of approximation spaces, we
are interested in IfN - fiH, whereas in the other context we are looking for

IIfN - RNII.

§3. Application to Data Compression and LOD Editing

In this section we show how the framework can be used on functions defined
over irregular triangulations to achieve data compression and LOD editing,
which are both standard applications of MRA. The context here is the planar
or spherical setting of [4,5], only the filters need to be changed. Indeed, the
analysis operator used in those papers was the orthogonal projector (the goal
being progressive visualization). However, for compression it is often useful to
know in advance the error between the original function and its approximation,
in terms of the wavelet coefficients that were used in the reconstruction. This
will be achieved by designing new filters.

3.1. Isometric subdivision

In order for the detail coefficients to have the error measure property, the
synthesis operator is required to be an isometry. Indeed, suppose that

"* S : V' -- Vi+l is an isometric operator, Vi = 0,... , N - 1,

"* the complementary spaces 0i are chosen orthogonal to the W', Vi =

0,...,N- 1.
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When the latter condition is fulfilled, we say that we are in a semi-orthogonal
framework. If fN denotes the original function, then, according to the global
reconstruction formula (2), the quantity IIfN _- f°ONJ12 which measures the
contribution of the correction steps in the reconstruction process is

iisN-i o ... o Sl(go) +... + SN-I(g9N2) + 9N-i1I2.

Because of semi-orthogonality, it is equal to

1SN-1 o_. -. o Sl(go) -I... + SN-I(gN- 2 ) 1
2 + 119N- 112,

and because SN-1 is an isometric operator, we can factorize and remove it
from the first term above, and then iterate the operation to get

N-1

IIN - °f; 112 = 1Ig,112.
i=O

Notice that even if the subdivision operators are not isometric,

IufN - f°ONII 2 < IISN-1112"'" IIS 211go2 +." + IISN-11 2112 + IIgN-II2

still holds in the semi-orthogonal setting. Let fN denote the partially re-
constructed function, and suppose in addition that we are in an orthonormal
framework, that is, the functions V) form an orthonormal basis of Wi. Pro-
ceeding as above leads to

N-1

IIfN - NI 2 Z (b0
i=0 k

where the b 's are the wavelet coefficients and E' equals 1 whenever bM is taken
in the reconstruction and 0 otherwise. Consequently, in this setting we have
an error measure in terms of wavelet coefficients.

3.2. An isometric subdivision operator

The idea behind this construction is that the corresponding analysis oper-
ator should have reasonable approximation quality, which seems intuitively
required to achieve compression. Accordingly, the projection operator used
in [4,5] is taken as a starting point, the problem being to approximate it by
means of an isometry. Let P' : V'+i --+ V' be that operator. The first step
is to find the matrix of P' with respect to some orthonormal basis (e'+') and
(e') of V'+l and V'. Now let UDV be the singular value decomposition of
that matrix. This decomposition admits the following interpretation:

e V is the matrix of an isometric operator of Vi+1 in the basis (e'+i) since
it is unitary and the basis is orthonormal.
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"* D is a t x c matrix (f < c) whose diagonal coefficients are all non-negative
and < 1. The diagonal matrix formed by the positive entries of D is the
matrix of a bijective operator mapping fl onto Ran(Pi).

"* Like V, the matrix U is an isometric operator of V'.

Let D be the matrix obtained by replacing every positive diagonal element of
D by 1. This amounts to turning the bijective operator above into an isometric
one, and thus UDV is the matrix of an operator P/ whose corresponding
subdivision operator S' is isometric. A few remarks can be made about this
construction:

• P2 does not depend on a particular choice of orthonormal basis.

* P2 is not the best isometric approximation of Pi in terms of L 2 norm
of operators, but it can be shown that it is the best with respect to the
Frobenius norm.

* The diagonal coefficient of D are by definition the cosines of the angles
between the spaces V' and V'+' (see, e.g., [7] Chapter 1). In the nested
case, they would all be equal to 1, and the corresponding subdivision
operator would be the identity.

* This method could be used to approximate operators by means of simi-
larities, by replacing the entries of D by an appropriate scalar a instead
of 1. Although better in terms of approximation quality, this leads to bad
visual results since the resulting subdivision operator doesn't reproduce
constants if a 5 1.

Notice that in the context of [4,5], this approximation is always computed
locally, leading to a global algorithm in linear time.

3.3. Examples

As it is mentioned in the beginning of this section, these examples were created
using the setting described in [3,4,5]; the reader is invited to look there for
details. The initial triangulation is completely irregular, generated by random
vertex insertion. In Figure 1, a piecewise linear setting is used for LOD editing.
The function is edited at a coarse resolution, by pulling values up (-- white)
at some vertices, and then adding detail coefficients back. Figure 2 shows an
example of data compression when the approximation spaces are spaces of
piecewise constant functions over triangulations generated from the original
one by homogeneous decimation. This last setting is the full generalization of
Haar wavelets to irregular grids, as it would lead to them in the regular case.

§4. Scalar Datasets on Irregular Meshes with Arbitrary Topology

In this section we describe how the non-nested framework can be used to
handle scalar attributes defined on meshes with any topology. As a starting
point, we take a multi-resolution decimation model, based on the vertex-
removal (VR) operation to simplify the geometry. This means we assume
that an initial fine mesh is given along with its associated sequence of VR's
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i. Original ii. Coarse visualization

iii. 50 points edited iv. Reconstruction

Fig. 1. Picture design using level-of-detail editing.

Original: 50000 triangles Compressed to 5%, 6% error

Fig. 2. Compression of a piece-wise constant function.

that can be progressively applied to decimate the mesh down to a base mesh.
In addition, we suppose that the scalar attributes are defined by means of
piecewise constant and/or linear functions parameterized on the initial mesh.
In what follows, PI(V) denotes the polygon of influence of a vertex V; it is the
polygonal area delimited by the 1-neighbours of V. In order to apply the non-
nested framework, approximation spaces and approximation operators need
to be defined.

4.1. Local mapping

Let M', i = No, ... , N, denote the triangular mesh consisting of i vertices (the
original mesh after N - i VR operations). Let '(M') be the space of real-
valued functions defined on M', and C' (resp. L') be the subspace of functions
of .F(Mi) that are piecewise constant (resp. linear) on each triangle of M'. We



216 A. Gerussi and G.-P. Bonneau

refer to these spaces as the upper approximation spaces. Each VR alters locally
the surface, thus functions of :F(Mi+') and -F(M') are defined on different
domains. To define an approximation problem, a common parameterization
for these functions is required. To that end, we assume that for every VR of
vertex Vi, a local one to one projection 11' of PI(Vi) onto a plane is also known.
The reader can refer to [8] for a study of the existence and determination of
such a projection. We use 11 to consider the change of parameterization
H' : M' --+ Mi+1 as the mapping defined by HT o Hi = Hi over PI(Vi) and by
the identity outside.

4.2. Scaling spaces and data decomposition

Let IC stand for C or L. To a function f E 10 we associate the function
f ii-1 = foH'-', and let ,C',i-1 C 17(Mi-') be the space of all these functions.
This can be iterated: The local mappings also define a global mapping from
the base mesh to the mesh Mi by HNu'O = H'-1 o ... o HNO, for each i =
No + 1,..., N. This allows to define the approximation spaces rci from the
upper approximation spaces as

V. = {f o HN°'" I f cV IK} C F(MNO).

The second step is to define the operators P/ : fCi+1 - PI. Fortunately,
working directly in the approximation spaces is not required: Because they are
isomorphic (by construction) to the upper approximation spaces, it suffices to
define some operators Pi : ICi+l,i , 10, and for the purpose of visualization,
the least-square projection operators will be used. The operator Pi is thus
defined by

P : 1+= fi+l0HN'o+l H 1(i+lli\ )o HNogi

¢i+l i

fi+1 C 10+1 defines fi+4 . to which we apply one decomposition step to get
an approximation fi E V and detail coefficients (1 in the linear case, and 2
in the constant case). The entire operation is then repeatedly applied to fi,
fi-1, etc. Consequently, in practice, everything happens in the upper approx-
imation spaces which have a much simpler structure than the corresponding
approximation spaces.

4.3. Results and remarks

The output of this algorithm is a coarse function fN0 defined on the base
mesh and a list of detail coefficients that allow the exact reconstruction of
the original function through the hierarchy of LODs. Figure 3 shows some re-
sults in the linear setting. In these examples, the geometric criterion guiding
the decimation priority-queue is simply the distance from the 1-neighbours of
a candidate vertex to their least-square approximation plane. On the upper
right snapshot, we see the drawback of a geometric-only driven priority queue:
Some quasi-planar areas on the object have been severely decimated, leading
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Original: 32000 vertices Geometric criterion: 3000 v.

Geom. & data criterion: 3000 v. Same without vertices

Fig. 3. Bracket: linear approximation examples.

to a quite coarse approximation of the function. The lower snapshots show
the result using the geometric(2) and data(!) based criterion. The resulting
approximations are better, but the geometry presents some visible deforma-
tions (this is also partially due to our simple geometric criterion). Finding a
compromise in an automated way seems to be a difficult task. Moreover, if the
simplification is just a process prior to other computations, such as can be the
case, e.g. in mechanics, then a high accuracy in the approximated function
might be the primary interest. Thus, it seems better to let the weights depend
on the application, under user control.

4.4. Comparison to classical MRA

In [6], a MRA for subdivision surfaces is used to handle both the geometry
and the scalar attributes of a mesh. The presentation given above makes
the link between these methods and the decimation approach. Indeed, from
the "upper" point of view - the decomposition using the operators P - it
compares to decimation in many respects, whereas it is also a decimation step
corresponding to the approximation spaces, which is exactly what is done is
[6] in the nested case. However, parameterizations are then obtained without
a local projection hypothesis, thanks to the particular 1-to-4 splitting strategy
that is performed on the base mesh.
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