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Interpolation with Curvature Constraints

Hafsa Deddi, Hazel Everett, and Sylvain Lazard

Abstract. We address the problem of controlling the curvature of a
B16zier curve interpolating a given set of data. More precisely, given two
points M and N, two directions i! and i, and a constant k, we would
like to find two quadratic B6zier curves P1 and r 2 joined with continuity
G1, and interpolating the two points M and N, such that the tangent
vectors at M and N have directions il and i respectively, the curvature is
everywhere upper bounded by k, and some evaluating function, the length
of the resulting curve for example, is minimized. In order to solve this
problem, we first need to determine the maximum curvature of quadratic
B6zier curves. This problem was solved by Sapidis and Frey in 1992. Here
we present a simpler formula that has an elegant geometric interpretation
in terms of distances and areas determined by the control points. We
then use this formula to solve the variant of the curvature control problem
in which P1 and r 2 are joined with continuity C1, where the length a
between the first two control points of P1 is equal to the length between
the last two control points of F 2, and where a is the evaluating function
to be minimized.

§1. Introduction

An important problem in CAGD is the construction of curves interpolating
given sets of data that also satisfy constraints on their curvature. Such curves
are visually pleasing and are said to be "fair" [1,2]. Fair curves are also impor-
tant in the design of highways, railways and trajectories of mobile robots (see
[9] and [6]). In these applications, curvature continuous curves with bounded
curvature are desirable. Constructing fair curves has been the subject of recent
research; see, for example, [4,5,7] for results about constraining the curvature
at the endpoints, and [3,8] for results about monotonicity of curvature.

In this paper we consider the problem of controlling the curvature along
the whole length of a Bdzier curve interpolating a given set of data. More
precisely, given two points M and N, two directions V and V, and a constant
k, we want to find two quadratic B6zier curves P 1 and P 2 joined with continuity
G1, and interpolating the two points M and N, such that the tangent vectors
at M and N have directions it and V respectively, the curvature is everywhere
upper bounded by k, and some evaluating function, the length of the resulting
curve for example, is minimized. We call this the curvature control problem.
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In order to solve this problem, we first need to determine the maximum
curvature of quadratic B6zier curves, that is, to find an exact formula in
terms of the control points. Note that, for our problem, it is not sufficient to
compute the maximum curvature of a particular Bdzier curve using numerical
methods. Note also that a quadratic B6zier curve is a parabola and, although
it presents no special difficulties to compute the maximum curvature of a
parabola in terms of the coefficients of its implicit equation, what we require
is a formula in terms of the control points.

In [8], Sapidis and Frey give a formula for finding the maximum curvature
for quadratic Bdzier curves. In Section 2, we recall these results and present
a simpler formula that has an elegant geometric interpretation in terms of
distances and areas determined by the control points. We then use this formula
to solve variants of the curvature control problem. Definitions and motivations
for these variants are presented in Section 3.1. We solve in Section 3.2 the
version of the curvature control problem where r1 and F2 are joined with
continuity C', where the length a between the two first control points of FI
is equal to the length between the two last control points of r 2, and where a
is the evaluating function to be minimized. In Section 3.3, we prove that if we
require in the previous variant a continuity G2 instead of C' at the junction
point, then there exist non-degenerate data for which there is no solution to
the curvature control problem. However, if a solution exists, we show how it
can be computed.

Throughout the paper, curvature refers to non-signed curvature, unless
otherwise indicated. We denote by IJpqJJ the distance between points p and q,
and by " x " and "." the outer and inner products, respectively, between two
vectors.

§2. Maximum Curvature of Quadratic Bdzier Curves

Let r be a quadratic Bdzier curve with control points p0, Pi and P2 (see
Figure 1). Recall that F is defined for every t in [0, 1] by F(t) = (1 - t) 2po +
2t(1 - t)pl + t2p 2. Let A be the area of the control triangle PoP1P2 and m
be the midpoint of the segment PoP2. We assume that r does not degenerate
into a line segment, i.e., Po, pi and P2 are not collinear.

Theorem 1. The maximum curvature of a quadratic Be3zier F is either equal
to lpimll 3/.A2 if P, lies strictly outside the two disks of diameter pom and
rap2, or is equal to max{Ko,K 1} where to = A/I1pop 11' and K1 = A/1Jp1p2 13

are the curvature of 1(t) at the endpoints r(0) and F(1).

Before proving Theorem 1, we recall the result by Sapidis and Frey [8]
characterizing quadratic Bdzier curves with monotone curvature.

Theorem 2 [8]. The quadratic B6zier curve F has monotone curvature if
and only if one of the angles L(popim) and L(mplp2) is equal to or larger
than 2. In other words, F has monotone curvature if and only if p, lies on or
inside one of the two circles having as diameter pom and mp2 (see Figure 1).
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Pi

P O .. ..... ... - ... ..... . . • P 2

Fig. 1. The quadratic B1zier curve r has non-monotone curvature because Pl
lies strictly outside the two circles.

Sapidis and Frey also present in [8] the following expressions for the max-
imum curvature of quadratic B1zier curves. When the curvature is not mono-
tone along F, then its maximum curvature is 4al/lIpoB113 , where (see Figure 1),
a is the distance between po and P2, I is the distance between p1 and the line
joining po and P2, and IpoBII is the distance between Po and the line passing

through P2 and directed by fp + ji-p2. When the curvature is monotone
along F, its maximum is reached at one endpoint P0 or P2 of the curve, and is
equal to al or Ipi a respectively.

We are now ready to prove Theorem 1. Note that the area A of the
control triangle PoPlP2 is equal to al/2. Thus, in order to prove Theorem 1,
based on the results by Sapidis and Frey, it suffices to prove that 8A/I1poBlI 3 =

IpimII3/A2 or 2A = IJpimIJ.IIpOBJI. For completeness, we show how our result
is derived from Theorem 2.

We assume first that p1 lies strictly outside the two disks of diameter pom
and rnp 2 . Thus, the curvature K(t), t E [0, 1], of the quadratic B1zier curve F
is not monotone by Theorem 2. It follows that the maximum curvature of F
is obtained when the derivative of n(t) is zero.

The first and second derivatives of the B1zier curve F are

F'(t) = 2((1 - t)(p, - Po) + t(p2 - p1))

= 2 (pi - Po) + 2t(p2 - 2P1 + Po), (1)

r"(t) = 2(P2 - 2 PI + PO). (2)

The curvature of F at F(t) is thus, for any t E [0,1],

K(t)- I'(t) x r"(t)l 1 !4 (pi- po) X (P2 - pI)11r'(t) 113 I1]r,(t)ll3'

giving
8A

( -(t) 8A (3)
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where A = j(Pi -PO) x (P2 -pl)l/ 2 is the area of the control triangle pop1p2.

The derivative of r,(t) is

' -24A(Ilr'(t)ll)' _ -12A(IIF'(t)11
2)'

llr,(t)114 - llr,(t)115

Since we assumed that the B~zier curve F is not degenerate, p0, Pi and P2 are

not collinear and thus A # 0. Thus, t'(t) = 0 if and only if (Flr'(t)11 2)' = 0,

or alternatively, r'(t) , F"(t) = 0. Using (1) and (2), we get

r'(t) F r"(t) = 4 [(P2 - 2p, + pO)t + (P1 - P0)]. [P2 - 2p, + p0] = 4(at - /),

where a = IJP2 - 2p, + p0l12 and 3 = -(p, -PO)' (P2 - 2 p, + po).

Thus, the derivative of the curvature K(t) vanishes if and only if t = r =

/3/a. Note that - is in (0, 1) because the curvature of r is not monotone by

assumption. Therefore, the maximum curvature along r is obtained for t = T.
2A

Lemma 3. IIr'(-)II- pllnml2A

Proof: By (1), the square of the first derivative of F(t) at T is

II]'(T)112 = 4 [(P2 - 2pi + po)T + (P1 - P0)] 2 = 4(a7 2 - 2T/3 + llPOplI 2 )
)32 /32 4 2 2,

S4(a-2 - 2a-/3 + 1lpopill 2) = 4(allpopill - /3

where, as before, a = 11P2 - 2p, + po112 and /3 = -(PI - P0) ' (P2 - 2p, +

PO). Since P2 - 2p, + Po = P'PO + PiP2 = 2p', we get a = 411plmn[ 2 ,
/3 = -2• P-- and thus

IIF'(T)112 - pM 2 (411pim~ lllpopiI2 - 4(pp--- p) 2 ).

It follows from the canonical equation (U X V) 2 + (U. V) 2 = U 2V2, for any

two vectors U, V, that

Ir ,(T )II = a p im- -)

Now, IPTOP-- x P I'M-I is equal to A, the area of the control triangle PoP1P2. Indeed,

P=(PP + pxP)/2 and thus IjP x ' = I xP-'×PYl/2 = A. Thus,

IIFr(-)112 = 4A 2/llpimll 2 which yields the result. El
The expression of tma = r,(7) now follows easily. By Lemma 3, IIF'(T)113

is equal to 8A 3/IjpimlI3 . Thus, (3) gives

K()= I1PimlI 3
A 2

That ends the proof of Theorem 1 when p, lies strictly outside the two disks

of diameter pom and mP2.
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When p, lies inside one of these disks, Sapidis and Frey (see Theorem 2)
proved that the curvature of the quadratic B~zier curve r is monotone. The
maximum curvature is thus the curvature at one endpoint F(0) or F(1). Equa-
tion (1) gives F'(0) = 2 (pi-po) and r'(1) = 2 (p2-pl). It then follows from (3)
that

A A
I-pOlp3 ad K(1) 11PlP2113

§3. Controlling the Curvature of Piecewise Quadratic B~zier Curves

3.1. Preliminaries

Let F1 and r 2 denote two quadratic B~zier curves with control points (Po, Pi,
p2) and (qo, qi, q2) respectively, and let r denote the concatenation of 17 and

1 2 . The general curvature control problem we address is:

Given two points M and N, two unit vectors it and V, and a constant
k, we would like to find two quadratic Bdzier curves r, and 1 2 joined
with continuity G 1 (at p2 = qo), interpolating the two points M and
N (at Po and q2 respectively), such that the tangent vectors at M and
N have directions V and V, respectively, the curvature is everywhere
upper bounded by k, and some evaluating function is minimized.

We consider without loss of generality k = 1; for any k # 0, we can obtain an
equivalent problem where k = 1 by scaling the plane.

The curves 1P and F 2 are connected (at P2 = qo) with continuity G1 if
and only if there exists [L E (0, 1) such that P2 = qo = /pp + (1 - y)qi. The
curve P interpolates M and N, such that the tangent vectors at M and N
have directions V7 and V, respectively, if and only if po = M, q2 = N and there
exists a and f3 positive real numbers such that P, - Po = aii and q2 - q, = 3,6
(see Figure 2). One way to solve the general curvature control problem is to

1) find the set of (a, 3, M) E (0, +oo) 2 x (0, 1) on which the curvature of F
is everywhere smaller or equal to 1, and then,

2) find a value (a, ,3, 1) in that set for which the evaluating function is
minimized.

In general, this is a non-linear optimization problem with non-linear con-
straints, and thus, cannot necessarily be solved quickly and accurately.
Clearly, the difficulty depends on the complexity of the set of feasible solutions
and on the evaluating function that is to be minimized. Here we consider sim-
plifying assumptions. First, we require a continuity C1 at the junction point
between the two curves IF and P 2 . This fixes p to 1/2 and reduces the num-
ber of variables to two. To bring the number of variables down to one, we
arbitrarily consider a = ,3. We then choose as evaluating function the length
a. By minimizing a, we ensure that all the control points Pi, P2 = qo and
ql remain close to the the points M and N we want to interpolate; in other
words, by minimizing a, we expect that the length of the resulting curve r
will not be too far from its minimum. With these further assumptions, we
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pi .f

oii

Fig. 2. Curvature control problem with continuity C' and a /3.

solve (in Section 3.2) the given interpolation and minimization problem, ex-
cept for the degenerate case when i! and V7 are parallel, for which we prove
that a solution does not necessarily exist.

In Section 3.3, we also consider a = 03, but we require a continuity G2

(instead of C') at the junction point between the two curves I'F and F 2. In
other words, we require the signed curvature to be continuous on F. The
variables are then reduced to (a, pL), but the constraint that the continuity is
G2 links these two variables, and thus the problem is actually one-dimensional.
We prove in Section 3.3 that this set of additional constraints is too restrictive
in the sense that there exists non-degenerate data (M, N, 7, V7) that cannot be
interpolated. However, if a solution exists, we show how it can be computed.

3.2. Curvature control problem with C1 continuity

We consider here the following variant of the curvature control problem:

Given two points M and N, and two unit vectors 17 and V, we want
to find two quadratic Bdzier curves F, and F2 joined with continuity
C' (at P2 = qo), interpolating the two points M and N (at Po and q2
respectively), such that the tangent vectors at M and N have direc-
tions V7 and 1 respectively, the maximum curvature of the two curves
is smaller or equal to 1, the distances a = Ilpopill and / = IHqlq2H
are equal, and such that a is minimized.

See Figure 2.
We show in this section how to solve this problem for non-degenerate

data, that is when 17 and V are not collinear. When V7 and V7 are collinear, we
show that there is not necessarily a solution.

As we said in Section 3.1, this problem is equivalent to finding the smallest
a E (0, +oo) such that the curvature of F, and F2 is everywhere smaller or
equal to 1, where po = M, q2 = N, pi = P0 + a17, ql = q2 - a1 and

P2 = qo = (p, + ql)/2.
We show how we compute the smallest ca E (0, +oo) such that the cur-

vature of F, is everywhere smaller or equal to 1. Computing the smallest
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a E (0, +oo) for 172 can be done similarly. We then return the curve F defined
by the biggest of those two a.

First, for any value a E (0, +oo), we need to determine an expression for
the maximum curvature of 11. By Theorem 1, it remains to determine whether
the maximum curvature of 171 is given by the maximum curvature imax(Fi)
of the parabola supporting 17, or by nO(r1) or K1(F1), the curvature of 171 at
its endpoints 17F(0) or 17(1), respectively. Thus, for any value a E (0, +o0),
we want to decide whether pi belongs to one of the disks of diameter porn
and mp 2, where rn is the midpoint of POP2 (see Figure 2). Let c and c' be the
respective centers of these disks and R be their radius. In order to determine
whether P, belongs to one of these disks, we compute and compare R 2 with
the distances I[pICII 2 

and Ilpic'112 .
Since P, and ql are linear in a, and P2 = (P, + ql)/2, m = (PO + p2)/ 2 ,

c = (P0 + m)/2, and c' = (M + P2)/ 2 , we have that (c - p0) 2 , (c - pl) 2

and (c' - pl) 2 are of degree 2 in a. Thus, R 2 < I1plcII 2 and R 2 < I1plC'112

16 -po q2 and
are inequalities of degree at most 2 in a (namely a > (7+! _V)6 2 and

a2 [(5fi + 3V) 2 - (fi - V)2] - 2a(16if + 8V1). - + 81jpoq2[12 > 0). By solving
these equations, we get a partition of (0, +co) into two sets of intervals I and
V" such that the maximum curvature ofF 1 is given by Kmax(F1) for any a E 1,
and by max(o0(F1), rtI(F1)) for any a E T'.

With A(popp 2) denoting the area of the control triangle POPlP2, we get
by Theorem 1, when Po, Pi and P2, are not collinear,

a = pImrnI 6  ,o(r7) 2  A(popiP2) 2 and KI(P1) 2 _ A(popiP 2) 2

A(poPlP2)4 '°p0P 6  ad 1( 11PP2116

A straightforward computation gives

ji+a( a-3'i!- V) -oq an -a(il + 6)
Pin4 ,pop i= t and u p =2 2

Thus, .A(poplP2) = 1--l x p'1/2 Iait x - a2 f x a I/4 and

Kmax(P )2 - (a 2(3W + Vy)2  .2a(3 F- + 11) • +--2 112)3

16(a 2f x V - ait x poq2) 4

2 ai' 7a o~ 2  
_4(a

2 fi x i'- aft, x -- )
K0(Fx )2 = (a2f~ X V - co!, x P~oq2)2 and r.1(r1)2 = (~qXV-atxjoq)

16cea (a(i +V) - pq-- ) 6

Thus, rtmax(1i)
2 < 1, 0o(r1)2 < 1 and K1(F1) 2 < 1 reduce to inequalities

in a of degree at most 8, 6 and 6 respectively. Finding the intervals of 11
and 2Y' on which those inequalities are satisfied can therefore simply be done
by computing the roots of the corresponding equations. More precisely, the
smallest of (i) the smallest root of zmax(](17)2 = 1 in -, and (ii) the smallest
root of ,0o(F)2 - 1 and K1(F1) 2 = 1 in T', is the smallest a for which the
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.L

P2 g o : ,•..

F2

P0 -

Fig. 3. Case where po, Pl and P2 are collinear and consecutive.

maximum curvature of F1 is smaller or equal to 1. Such a solution exists when
1x V5 : 0 because the maximum curvature of F 1 goes from +o to 0 since
Kma.(F1)

2 , Ko(F1) 2 and KI(r1) 2 tend to +co when a tends to 0, and tend to
0 when a tends to +oo.

We have shown that, when ii x 15 0 0, the smallest a E (0, +oo) such
that the curvature of F 1 is everywhere smaller or equal to 1, and such that
the control points po, Pi and P2 are not collinear, exists and we can compute
it. Suppose now that there exists & E (0, +oo) such that po, p, and P2 are
collinear (see Figure 3). Assume furthermore that p, lies in between Po and

P2; otherwise, F1 is not smooth and does not satisfy the constraint on the
curvature. Since p2 is the midpoint of plqi, it follows that po, P1, P2 and q,
are, in this order, on the line L passing through Po and directed by V7 (the
line is necessarily directed by i! because Pi 5 Po belongs to that line). With
17 x V5 0 0, q2 does not belong to L. Thus, for a < &, the triangle POPIP2 is
not flat but tends to a flat triangle, with flat vertex at pi, as a tends to &.
Therefore, when a tends from below to &, F1 tends to a straight line segment,
and the maximum curvature of F1 tends to 0. Thus, there exists a < & such
that the maximum curvature of F1 is smaller than 1. It follows that & is bigger
than the smallest solution a we found previously. Therefore, when V7 x 1" 0 0,
there is always an optimal solution with Po, Pi and P2 not all collinear.

We now show that, when it x × = 0, there may not exist a solution.
Assume for example that poq2- is not parallel to ii and V, and that i! + 1 = 0.
Then, when a tends to 0, ro(Fr), s17(F1) and rmu,(Fj) tend respectively to
+o0, 0 and +o0. Similarly, when a tends to +0o, they tend respectively to
0, +oo and +o0. It follows that max(ro(Pi), K(1l)) and imax(Fi) tend to
+00 when a tends to 0 and +oo. In addition, Ko(F ), t, 1(F 1 ) and Km•a(F1)
are never equal to 0 because then Ilpimll = 0 or A(popp2) = 0 which would
imply that po, p, and P2 are collinear, which is impossible since the two
rays starting at Po and q2 with direction ii and -V do not intersect. Thus,
max(r0o(ri), KI(rF)) and rsma(17,) are strictly greater than a positive constant
for any a E (0, +0o), and, by scaling the plane, this constant can be scaled to
a value greater than 1.

P -/ q2,

Fig. 4. Example where T > 0 for any ce > 0 (PoOq x V > 0, p x i > 0 and
i7 X V < 0).



Interpolation with Curvature Constraints 199

3.3. Curvature control problem with G2 continuity

We consider here the following variant of the curvature control problem:

Given two points M and N, and two unit vectors V and 6, we want
to find two quadratic Bdzier curves I 1 and F 2 joined with continuity
G 2 (at P2 = qo), interpolating the two points M and N (at Po and q2
respectively), such that the tangent vectors at M and N have direc-
tions 9 and V respectively, the maximum curvature of the two curves
is smaller or equal to 1, the distances a = Ilpopill and f = IIqlq2JJ
are equal, and such that a is minimized.

As we said in Section 3.1, the problem is equivalent to finding the smallest
a E (0, +oo) such that F1 and r 2 are connected G2 and their curvature is
everywhere smaller or equal to 1, where po = M, q2 = N, Pi = P0 + ail,
q, = q2 - ai, and there exists ft E (0, 1) such that P2 = qo = ppi + (1 - IL)ql.

The curves F1 and F 2 are connected G2 if and only if the two signed
curvatures of r 1 and r 2 at P2 are equal, that is, by Theorem 1,

----- ---- 4
PoP1 < PIP2 4_ qq x qiq2

2 1IP1P21 - 2Iqoqll 3 '

when the triplets of points (Po,P1,P2) and (qo, q1, q2) are not collinear. We
easily get that P2 = (1 - )p-' , = - a(-- + V-),
pop,= aii and qlq2 = aV. Thus, we get that F is G2 if and only if

aji x (1 -J)(Poq- - a(it + V)) t(Poq- - a(it + V)) x a _

(1 -/p) 3 1piqxII3  
-

3IlpiqII3

Pxoq2-ailXV Poq2 xV--aiXV
(1-t)2 A 2

A-2- P+T=0 where T =P q2xV7-aixXV (if POq2 x (1+±V)#0).

Standard calculations yield that the equation I2 - 2 PtIP + T = 0 admits
a root in (0, 1) if and only if T E (-1/3, 0). We can easily choose P0, q2, ul
and V7 such that T ý (-1/3, 0). Indeed (see Figure 4), T > 0 for any it, V
that are on the same side of p-2 (i.e., Poq2 x V7 and f x V have the same
sign) and such that V7 lies in the small wedge defined by F and V7 (i.e., V7 x V
and Poq2 x 7 have opposite signs). We thus proved that there is no solution
to our curvature control problem for a set of non-degenerate choices of the
parameters M, N, it and 97.

However, when a solution exists, it can be computed as in the previous
section. Indeed, the curvature r.max(Fi) can be expressed as a ratio of poly-
nomials in a and p, and the inequality 'max(Fi) < 1 reduces to a polynomial
inequality of degree 28 in a. Similar remarks hold for no(Fi) and tq(Fi).
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§4. Concluding Remarks

It remains open to solve the curvature control problem when the length of the
curve is to be minimized. Another interesting approach would be to determine
how much longer than optimal our curves are. Also, we would like to consider
the case when the data consist of more than two control points. Note also
that, because of the high degree of the equations, it is not clear that the
solutions presented in Sections 3.2 and 3.3 are usable in an interactive curve
design context. This should be tested with an implementation.
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