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Fast Evaluation of Radial Basis Functions:
A Multivariate Momentary Evaluation Scheme

R. K. Beatson and E. Chacko

Abstract. This paper presents a scheme for fast evaluation of splines,
or “radial” basis functions, of the form s(-) = p(-) + Efil Ai®(- — z).
Here p is a low degree polynomial and & : R® — IR is a function that
need not be radial. This multivariate momentary evaluation scheme is
a generalization of the fast multipole method in which calculations with
far field expansions are replaced by calculations involving moments of the
data. The primary advantage of this new algorithm is that it is highly
adaptive to changes in ®.

§1. Introduction

This paper presents a scheme for fast evaluation of splines, or “radial” basis
functions, of the form

N
50) =90) + Yo NB( - 2). 1)

Here p is a low degree polynomial, and  : R™ — R is a function that need not
be radial. This multivariate momentary evaluation scheme is a generalization
of the fast multipole method in which calculations with far field expansions
are replaced by calculations involving moments of the data. The primary
advantage of this new algorithm is that it is highly adaptive to changes in ®.
More precisely, changing to a new basic function ® only requires coding a one
or two line function for the (slow) evaluation of ®. In contrast, adapting a
conventional fast multipole code to a different ® requires considerable analysis
of appropriate expansions and transformation theorems, followed by writing
a very specific code. The current algorithm reduces the incremental cost
of a single extra evaluation from O(N) to O(1) operations, and the cost of
a matrix-vector product (that is, evaluation at all centres) from O(N?) to
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O(N log N) operations. The algorithm can be viewed as a spline fitter in
that the approximation it produces is a piecewise polynomial supplemented
by appropriate direct evaluations. The method described is a multivariate
generalisation of the method of [4].

In outline the setup phase of method is as follows. Firstly, space is divided
in a hierarchical manner. For example, in a 2-D setting an initial square
could be divided into a quadtree. Then centres are associated with the panels
they lie in. Next, proceeding up the tree level by level, the moments of the
coefficients (the A;’s) about panel centres are calculated. Next working down
the tree for each level, a number of approximations to ® are formed. Then for
each panel within a level, polynomial approximations to that part of s due to
far away centres are formed by combining moments and the approximations
to ®. The evaluation phase first identifies the childless panel to which the
evaluation point belongs. Then it approximates the far field by evaluating
the polynomial associated with that panel, and adds to that approximation
the directly calculated near field part of s(z). For reasons of space, we will
not detail suitable methods for subdividing space, or the process of evaluation.
These matters are well understood in the context of the fast multipole method,
see for example [2].

The paper is organized as follows. The necessary mathematics for form-
ing polynomial approximations to s from moments and approximations to &,
and for translating moments is given in Secton 3 below. Section 4 contains
symmetry results that can substantially reduce the amount of work required to
form approximations to ® at each level. Section 5 contains numerical results
obtained with a preliminary implementation of the method.

§2. Notation

We will need the following notation. A multi-index o = (ay,...,@,) is an
n-tuple of nonegative integers. If = is an element of R", we will write its
components as z1,Ta,...,Tn. We will also need sequences of points in IR".
In an effort to make the meaning of all subscripted symbols transparent, we
will write all such sequences of vectors as {z,}, and z will never be used
unsubscripted to denote a single point in R".

If @ and b are elements of R", then we will say a is less than or equal to b,
and writea < b, ifa; < b; forall1 < i < n. We also define for z € R" and «, 8

multi-indices |a| = a1+ ay+--tan, o = aglaz! - a,!, % = 27252 - 25,
and for 0 £ 8 < a take (g) = (_07% The (multivariate) Binomial

Theorem then assumes the form

v = 3 (5)

0<f<a

for all multi-indices 0 < @ € Z™ and points z,t € IR". We further define the
normalized monomial

Valz) = z%/al, (2)
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and the a-th normalized moment about ¢ of the data {(zm,&m)}¥_;

M
Ota = Z kmVa(t — zm)- (3)
m=1

Also define [a, b] to be the n dimensional box {z € R" : a < z < b}, and e to
be the n-vector [1,1,...,1]T.

§3. Moment Expansions

Lemma 1 below shows that we can form a polynomial approximation s; to
a spline s of the form (1) by combining moments of the weights A with the
coefficients of a polynomial approximation ¢ to ® on a “double width” panel.

Lemma 1. Approximation via moments - correlations. Let ¢, d € R™ with
¢, d>0. Let t ¢ R™ with |t;| > ¢; +d; for 1 <i<mn. Let ¢ >0 and ® be a
function in C[t — (c+d), t + (¢ + d)]. Let

g(z) = Z aoVo(z —t)

{a:0<aLke}

be a polynomial of coordinate degree k such that

||‘I> - QHL°°[t—(c+d),t+(c+d)] <e.

Given centres z1,22,...2p With 2, € [—d,d] C R" for 1 < m < M, and
weights k1, K2, ...,km € R, let the corresponding “radial” basis function

M
s(z) = Z km®(z — 21,), (4)
m=1

be approximated by

M
si(z) = Z kmq(T — 2m) - (5)

m=1
Then
lls = s1llpeopt—c,tte] < €lllls - (6)
Moreover,
a(@ = Y, bsVa(z—1), (7)
{8:0<B<ke}
where

bg = Z An00,a—-0- (8)

{a:f<aske}
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Remark: Often in our applications of this lemma, ® will be truly radial, i.e.
of the form ®(-) = ¢(]| - ||2), for some function ¢ of one variable.

Proof: If —¢c <z -t < ¢, then for 1 <m < M we have
~(c+d)<(z—2n)—t<c+d.

This shows all but the expression for s; in terms of the moments of the data.
To see the latter, write

M
31(11:) = Z Km‘l(z - zm)
m=1

a6 Vol ~ 2m — 1)

il
I M
Ny

=Y km Zga—!((a:—t)—zm)"

m=1 0<a<ke

M
Sy B E T (5) e
m=1 0<cx<ke 0<B<a
M
>

(w—t (Zm)aﬁ
km Z Ga Z I (@a-8)

m=1 0<a<ke 0<B<

= Ay Z Vg(a) — t)a'(),a_p

0<a<ke | 0<f<a

= > a0a-p ¢ Va(z—1t). O
0<B<ke | Bazke

An efficient way to form the approximation s; is to use real FFTs to
compute the correlation of equation (8). Nominally, such a process involves
three FFTs per correlation. However, things may be arranged so that the
transforms of moments of panels, and those of the required approximations
to @, are computed once and used many times. Also sequences of coefficients
can be summed in the transform domain rather than the function domain.
This lowers the average number of FFTs per correlation dramatically. Thus,
in 2 dimensions the work per correlation is reduced to approximately O(k?) +
bk? log k operations, where b is small.

A proof similar to that of Lemma 1 shows the following total degree
version of the approximation via moments lemma.
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Lemma 2. Let ¢,d € R" withc,d > 0. Let t € R™ with [t;| > ¢; +b;, 1 <
i <n. Let € > 0 and ® be a function in C[t — (c+d), t+ (c+ d)]. Let

q(z) = 3 aoVa(z —t),
{a:0<a and |a|<k}

be a polynomial of total degree k such that

1% = allooft—(e+ay e+ (ctan <€ -

Given centres 21, 22,...,2y With zm € [—d,d] for 1 < m < M and weights
K1,K2,...,kym € R, let the corresponding “radial” basis function

M
s(@) = Y Kmd(e— zm),
m=1

be approximated by

M
s1(z) = Y Kma(z — 2m) -
m=1

Then
lis = s1llpoo—c,t+e < ellsll1 -
Moreover,
si(z) = Y beValz 1),
{B:0<8, 18]<k}
where
bg = Z Aa00,a—3 -
{x:f<e,|a|<k}

The next lemma shows that shifted moments can be expressed as a convo-
lution of moments about a given point. This result will be used in generating
the moments corresponding to a larger panel of centres indirectly from the
moments corresponding to subpanels. The indirect process will be more effi-
cient than direct formation when the number of centres is large because the
operation count for the indirect shift depends on the order of the moments,
not on the number of centres.

Lemma 3. Indirect shifting of moments - convolutions. Let 21, ..., 2y be given
points in R™ and ky,...,kpm be corresponding weights. Let o, be the a-th
normalized moment of the data defined in equation (3). Then for allv,u € R"
and multi-integers o

Opu = Z Va(v — u)oy,a-5 - (9)
0<f<a
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Proof:

! a!

=$ f:nm ) (g) (0 — ) (u = 2) P

m=1 0<g<a

L M ] M
O'v,a='(;i an(v—zm)z— X:Ifcm(v—u+u—zm)“
m=

M
= Z Km Z Va(v — u)Vo—p(u — 2m)

m=1 0<f<L
Z Va(v —u)oyo-p. O

0<p<a

I

In using Lemma 3 to translate moments we can reduce the operation
count by using either FFT convolution or a tensor product approach.

We discuss firstly the tensor product approach. The tensor product ap-
proach may be viewed as making a shift from u to v not in a single step, but
as a series of shifts in the coordinate directions. For simplicity we will discuss
only the 2-dimensional case.

Consider the formula (9). If v — u = (2, 0), then we see immediately that
Vs(v — u) is nonzero only when the second component of 8, 3,, is zero. Thus
for v having the same second component as u,

Uu,a = Z Vﬂl (’Ul —_ ul)au,a—-(ﬁl,O) . (10)
0<B1<e
Considering o, 4 as an array indexed by v and the calculation of moments of
degree not exceeding k, equation (10) above implies that each row of ¢, , may
be calculated in 0(k2) flops. Thus if v and u have the same second component
all moments of degree not exceeding & can be shifted in O(ks) flops. Similar
remarks apply to {ow,a} and {0, o} when w and v differ only in their second
components. Thus, in the 2-dimensional case this tensor product strategy
reduces the flop count for a single shift of all moments of degree not exceeding
k from 0(k4) to 0(k3).
An alternative is to use FFT convolution to compute the transformation
of the moment shifting lemma, Lemma 3. The corresponding operation count
is 0(k2 log k) in the 2-dimensional case.

§4. Symmetry and Approximations to ®

In this section we will show how symmetry considerations can greatly reduce
the number of approximations to ® that need to be computed. In the 2-
dimensional situation, with a quad tree subdivision of space, and without
clumping, there are 40 different geometries of source and target for each level.
The method requires approximations to ® on all the corresponding double
rectangles. However, for most choices of ® the number of approximations
that need to be computed from scratch is reduced to 7 by the symmetry
relations of Lemma 4 below. Related symmetry considerations for the fast
multipole method are discussed in Wang and LeSar [7].
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Lemma 4. Symmetries and approximations of “radial” functions. Let J1, ...,

Jn, be subsets of R and 1 < p < oo, and let ® and g be functions in
LP(Jy X -+ X Tn).

e Suppose ® is an even function of the k-th component of z, . Define a
function ¢ by

(1, Thy oy Zn) = q(T1, -0, =Tk, - -+, Tn), (11)
for all (z1,...,z,) €Tt X ... X =T X ... X Jn. Then
”‘I) - q“LP(JIX"'X—JkX"'XJn) = ”‘I) - CI||LP(J1><---xka---x.7n)- (12)

e Suppose ®(y) is unchanged by permutation of the components y1, ..., Yn,
of y. Let = be any permutation of the integers {1,2,...,n}, let 7~! be
its inverse, and define § by

q(yla"'ayn) = q(y‘lr‘l(l)a"wyw—l(n))’ (13)

for ally € Jr1) X *** X Tr(n)- Then

12 = dllze(Fpyx-x Tnny) = 12 = Lo x-x 70)- (14)

Proof: Let ®, g and § be as in the statement of the first part of the lemma.
Let z = (21, +,Zk, - %) beapoint in Jy X ... X =Jg X ... X Jp. Using the
evenness of ® in the k-th component of z,

|B(z1,. .-y Thye oy Tn) = (1,0 Ty Tn))|
=|®(z1,.. ., —Thy- -1 Zn) — q(T1y. -0y, —Thy- oy T
=|®(z1,. oy Uy, ) — @(T1, .Uy, T)]

where (z1,--+,u, -+, %,) is a point in J; X --+ X J,,. The first part of the
lemma follows by using this equality in the appropriate p** power integrals
and essential supremum.

We turn now to the second part of the lemma. Let ®, ¢, and § be as
in the statement of that part of the lemma. Let y = (y1,...,¥n) be a point
in Jr(1) X ++* X Tr(n)- Using that ®(y) is unchanged by permutations of the
components of y, and defining z = (z1,...,2n) = (Yr-1(1), . - - s Yr=1(n))s

|®(y17 cee ayn) - (j(yla s ayn)l = |¢(y1) cee 1yn) - q(yw‘l(l)y v ,y'rr—l(n))|
= |®(z1,... &) — q(z1,...,Tn)],

where (z1,...,&,) is a point in Ji X -+ - X J,. The result follows by using this
equality in the appropriate p'? power integrals and essential supremum. 0O

Remark: Suppose ®(-) = ¢(]| - ||p) for some function of one variable ¢ and
some p-norm for R™, 1 < p < co. Then & is even in all the components of z,
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33|34 |3 |36 | 37|38 39
©Oy) | (v) | @y) | GBy) | (7y) | (By) | (%)
26| 27 | 28| 29| 30 | 31 | 32
(109)] (4y) | (5} | (6y) [(1Ty)f(12y) | (13y)

2 | 23 24 | 25
(14y)](15y) (16y) | (17y)
18 | 19 20 | 21
@) | @) . (19%)| (18%)
1 | 15 6 | 17
@ | 5y (15%)| (14%)
10 1|12 13
an ] 4|56 | 6x]m|im

011123 |@|on|o

Fig. 1. Symmetry in the 2D setting.

and is also unchanged by permutations of the components of z. Hence, this
lemma applies to all such generalized radial functions and allows us to use
symmetry to obtain approximations to ® on new regions from those on old.

Figure 1 shows the geometry of source panels to target panels in IR?
when we use a quad tree subdivision of R? without clumping. The solid
black square is the target, or evaluation panel, and the possible source panels
are numbered 0 through 39. Actually, the sources in the left-most column
and bottom-most row would not be used for the illustrated position of the
evaluation panel within its parent. However, they would be used for different
positions of the target. If the source is [~d, d] and the target is [t—¢, t+¢], then
Lemma 1 requires an approximation g to ® on the “double width” rectangle
[t—(c+d),t+ (c+d)]. If  has all the symmetries of Lemma 4, then at each
level only the seven approximations corresponding to source panels 0,...,6
need be calculated directly. The 33 other approximations are easily obtained
by symmetry. The relevant symmetries to use on a previously calculated
approximation are indicated in parentheses in panels 7 to 39. For example,
the notation (2z) in source panel 7 indicates that the approximation for source
panel 7 is obtained from that for source panel 2 by symmetry in z. In the
function domain this corresponds to negating the coefficients of odd powers of
z. In the Fourier domain it corresponds to a block rearrangement of columns
or rows, depending on which correspond to z. Similarly, the notation (1t)
in source panel 10 indicates that the approximation for source panel 10 can
be obtained from that for source panel 1 by symmetry in ¢ and y. This
corresponds to a transpose operation on the coefficients in both the function
and Fourier domains.
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§85. Numerical Results

Some numerical results from a primitive implementation of the algorithm are
given in Tables 1-4. In this implementation the core tensor product polyno-
mial approximations ¢ to ®, employed as in Lemma 1, are formed by interpo-
lation at shifted and scaled Chebyshev nodes followed by economisation. The
moments, and the coefficients of the approximations to ®, typically have a
wide dynamic range when the polynomial degree is 15 or more. Consequently,
some extra device is needed in order to make the algorithm stable, especially
when the FFT is used. In the current code the method used is a scaling of
moments and polynomial coefficients analogous to that suggested by Green-
gard and Rokhlin [6] for the 2-D fast multipole method. The device may be
viewed as scaling every panel at every level to be [—2,2]2.

In the calculations reported, the centres are approximately uniformly
distributed on [0,1]2. If the number of centres is N, then in Table 1 the
number of evaluation points is the smallest perfect square bigger than N, and
in Table 2 the number of evaluation points is the smallest perfect square bigger
than 10N. In both cases ®([z,y]) = \/c? + 2% + 32, where ¢ = 1/V/N, and
all the coefficients p, of the spline (4) are 1. The piecewise tensor product
bivariate polynomials used are of coordinate degree 7.

Tab. 1. Moment based method versus direct evaluation.

# of |Ord. Alg.|FFT Alg.| Direct |Ratio | Abs. Rel.
centres time time time error error
4000 0.41 0.27 3.57 | 13.16 {3.99E-04 |1.30E-07
8000 0.84 0.58 | 14.90 | 25.51 {2.42E-03 |3.95E-07
16000 1.78 1.23 | 59.98 | 48.82 |1.71E-03 |1.40E-07
32000 3.64 2.65 |237.47 | 89.75 |9.30E-03 |3.79E-07

Tab. 2. Moment based method versus direct evaluation.

# of |Ord. Alg.|FFT Alg.| Direct | Ratio | Abs. Rel.
centres time time time error error
4000 1.37 0.97 | 35.14 |36.28 |5.49E-04 |1.7T9E-07
8000 2.88 2.00 | 148.98 | 74.49 |4.39E-03 |7.16E-07
16000 5.87 4.17 | 593.40 |142.23 [2.07E-03 |1.69E-07
32000 12.51 8.98 12356.92 (262.33 |1.82E-02 |7.43E-07

The timings in the tables are in seconds on an Intel pentium based ma-
chine. Timings are given for direct evaluation and for the algorithm both with
and without the speed benefits of FF'T convolutions and correlations. Tables 3
and 4 repeat the runs with polynomials of coordinate degree 15.
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Tab. 3. Moment based method versus direct evaluation.
# of |Ord. Alg.| FFT Alg.| Direct | Ratio | Abs. Rel.
centres time time time error error
4000 1.19 0.81 3.57 | 4.42 |3.47E-08 |1.13E-11
8000 2.97 1.70 | 14.90 | 8.74 |1.74E-07 |2.84E-11
16000 5.93 3.55 | 59.98 | 16.88 |1.35E-07 |1.10E-11
32000 13.19 7.74 (237.54 | 30.69 [6.17E-07 [2.52E-11
Tab. 4. Moment based method versus direct evaluation.
# of |Ord. Alg.|FFT Alg.| Direct | Ratio | Abs. Rel.
centres time time time error error
4000 4.20 219 35.14 |16.06 (2.49E-08 (8.11E-12
8000 9.32 4.51 | 148.37 {32.89 |1.09E-07 |1.77E-11
16000 19.16 9.32 | 593.40 | 63.65 |8.48E-08 |6.91E-12
32000 39.70 19.52 |2356.92 |120.76 [3.86E-07 [1.57E-11
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