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Abstract
In this paper a method for the analysis of a frequency selective surface (FSS) supported by
a bianisotropic substrate is presented. The frequency selective structure is a thin metallic
pattern—the actual FSS—on a plane supporting substrate. Integral representations of the
fields in combination with the method of moments carried out in the spatial Fourier domain
are shown to be a fruitful way of analyzing the problem with a complex substrate.

1. General Equations

The geometry of interest in this paper is depicted in Figure 1. The sources of the problem are
assumed to be confined to a region located to the left of the bianisotropic slab, which extends
from z = z; to 2z = zy_;. The depth parameter z is defined by the normal of the interfaces as
shown in the figure. The scatterer is a periodic pattern of metal—frequency selective surface
(FSS)—located at z = 2 on the left hand side of the slab. The space outside the slab is
assumed to be homogeneous, lossless and isotropic with relative permittivity €, permeability u,
and relative impedance 1 = /p/e.

The integral representation of the solution to the Maxwell equations in an isotropic region
is used to characterize the electric field in the region outside the slab and the scatterer. The
stratified geometry also suggest that an expansion of the Green’s dyadic in plane vector waves
is pertinent [1]. A systematic use of these two concept gives the following representations of the

scattered electric field [3] (0o = \/1o/ €0 and k = /e [co):
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Figure 1: The geometry of the problem.

where the Fourier variable in the z-y-plane is denoted k; and the normal (longitudinal) wave
number, k,, is defined by k, = (k% — k?) Y 2, (Imk, > 0). J(k;) denotes the Fourier transformed
surface currents of the plane z = zy, and the projection dyadic P*(k;) is defined by [3]

kik,
k2
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and the reflection dyadic r(k;) of the slab and
ki ..
vE (k) =+ (12 F -k-t-ze”)
Z
where I, is the identity dyadic in the z-y-plane. The two (real) unit vectors in the z-y-plane

&y(ke) = ke/ke,  &1(ke) = 2 x &)(ky)
and the split field F*(k;,2) at the interface is [6]

k A N
F* (ki z) = -—Ezy(kt,z) (e”e“k + unzte_j_eJ_> -2 X Hyy(ky, 2)

2. Integral Equation for the Surface Current

We employ the Floquet’s theorem [2] to the surface current J(r) on the FSS and the Fourier
transform of this current is [5]
I (ke) = Z TE(kmn)8? (ks — kmn), ki € B2

mn=—o00

AE

where Ag is the area of the unit cell (sides a and b with the angle 2 between the axis) and

2rm 2mn 2rm

where k% and K} are the z- and the y-components of the wave vector of the incident field,
respectively, and where J g(kmny) is the Fourier transform of J(7) over the unit cell E evaluated
at Kyn.

The boundary conditions on the FSS imply that
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Figure 2: Power transmission (in dB scale) of the co-polarization for a hexagonal pattern of
loaded tripoles on an isotropic slab as a function of frequency (GHz). The angle of incidence is
6 = 60° and ¢ = 0°, and the polarization is TE. The tripoles are 9 mm long with 3 mm long
ends. The width of the metallic strips is 0.5 mm. The elements are arranged in an equilateral
lattice with side 16.5 mm. The polarization of the incident field perpendicular with one of the
sides in the hexagonal pattern. The thickness of the isotropic substrate is d = 0.12 mm and the
permittivity is e = 4.3(1 + 40.021). The dashed line shows the computed values and the solid
line shows the measurements.

1/2
where h = 21 — zp > 0 and where k;,,,, = (k2 - |kmn|2) , (Imk;yp, > 0) and where we have
introduced the vector field

__knon (K. . .
Tmn = 2 A5k (k28||e|| +éiéy ) - Jelkmn)

to simplify the notation. This relation is the basic equation used for the determination of the
unknown quantity &,,,, which is solved by a method of moments technique in the spatial Fourier
domain [3]. Once this quantity is determined, all other fields can be obtained.

3. Results

We illustrate the effect of an isotropic, homogeneous dielectric substrate on the transmission
properties of the FSS in Figure 2. The effect of a bianisotropic substrate is illustrated in Figure
3. The constitutive relations used here are [6]

1
D=cfe-E+m¢-H}, B=_{C-E+mp-H
The material parameters of the slab is [4]

3 0 0 100 00 O 0 0 0
e=|0 ¢, 0] p=[0 10| ¢={0o0 2] ¢=[0o 0 o 1)
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Figure 3: The same element and unit cell geometry as in Figure 2 but the substrate is bian-
isotropic. The material parameters is given in (1) and the thickness of the substrate is d = 6 mm.
The curves that correspond to the co-polarization are given by lines without crosses and the
cross-polarization curves are given by lines with crosses. The solid lines show the cases where
€y = 3 and Q = 0 (i.e., an isotropic substrate), and the dashed lines show the cases where
€yy = 10 and © = 0.9. The angle of incidence is § = 30° and ¢ = 0°, and the polarization is
TM.
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