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Abstract
The scattering of a plane eigenwave normally incident on a half-plane placed in a chiroplasma
whose distinguished axis is parallel to the edge of the screen is considered. The formulation
of the problem leads to the vector functional equation which is exactly solved by the Wiener-
Hopf-Hilbert method. Some distinct properties of the diffraction problem are noted.

1. Introduction

Diffraction of waves as an item of bianisotropy research in electromagnetics is in need of a
unimaginative but adequate model description. As for chiral media subjected to an external
magnetic field, the constitutive relations of a chiroplasma [1] are rather simple. They differ
favorably from a previous ones [2] by what properly furnish the transition to an isotropic chiral
medium. Therefore we use the chiroplasma model in the attempt to obtain an exact analytical
solution of a half-plane canonical diffraction problem with reference to complex birefringent
medium. As opposed to its nonchiral [3], nongyrotropic chiral [4] and biisotropic [5] counterparts,
the problem is led to the vector Wiener-Hopf equation. The matrix factorization is fulfilled by
virtue of the Wiener-Hopf-Hilbert method. Some features of the obtained exact closed-form
solution are discussed then.

2. Statement of the Diffraction Problem

A perfectly conducting screen x > 0, y = 0 is embedded in a chiroplasma whose distinguished z-
axis is parallel to the edge. The medium is described by the constitutive relations (time-harmonic
factor exp (-iwt) is meant)

SD = g-E+iCB

H = iCE+B/ji.

The permittivity S depends on the reduced frequencies Q and R, see explicit definition in [6].
One of two plane eigenwaves with the wave numbers Xl,2 where

1, 2 [ei+ez+aV/(EI+ez a)2+4ae,], a=4ME., 2 , k2, =wVe,,M (2)
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propagates in the sagittal plane z = 0 and falls on the half-plane under an angle 0. In this

case, the electromagnetic field may be described via the sum of two scalar functions Wj(x, y)

(j = 1, 2) representing the eigen polarizations with the wave numbers according to Eq. (2). The

total field must satisfy the boundary conditions on the screen, where 6y x E(W (x, 0) = 0, and on
its sequel, where 6Y x E(t and 6y x H(t are continuous. The scattered field is subjected to the

edge condition [7] and the radiation condition at infinity.
The secondary field is sought in the form of the Fourier integral

00

p(xy) f b(a,y)elxda (3)
-- 00

where -P (a, y) yields to the equation

with non-coincident y -- - 3, j-- 1,2. The solution of Eq. (4) is

4 Ai(a)e 717 " + Bl(a)e-72 y, if y >_ 0
¢(a,y) - A2 (a)e 71

Y + B 2 (a)e 7 21, if y <0 (0)

where Aj (a), Bj (a) are amplitude functions to be found. Using Eqs. (3)-(5) we translate the
boundary conditions into the spectral domain and present in the matrix form

)- L(a) =E(a) + U(a) (6)

where the two-element column-vectors U(a) and L(a) represent the functions of a which are
regular in the regions 11u, iHL of the complex a-plane, respectively. The symbols Hu (IIL)
indicate the upper (lower) half-plane of a including the common regularity strip along the Re a-
axis. The elements of U(a), L(a) include the unknown amplitude functions whereas the vector
E(a) consists of elements relating to components of the transformed electric field of the incident
plane wave EW) (x, y). Eq. (6) is the vector Wiener-Hopf equation with the matrix kernel

O(a) (Qij(a)) where

2Y '2 2'y
71 6-2Y€2

Q21 1 (a Q22 (a) 711 _Y2

3. Solution of the Functional Vector Equations

In order to perform the fundamental step in the Wiener-Hopf technique, that is to decompose

the matrix Q (a) in the form of a product Q(a) = Qu(a) -QL(a) we use the Hurd idea [8] and
re-formulate the homogeneous version of Eq. (6) as a vector Hilbert problem on the branch cuts
F 1,2 due to the branch points a = X1 ,2 in IHu. Let the "+" and "-" subscripts indicate the
values of functions at the opposite sides of F1,2 . After elimination of U(a), one obtains a vector
Hilbert problem

L+(a) = H(a) . L_((a), where Ro(a) = Q+ (a) Q_(a). (7)
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The matrix H(a) has zero trace and contains only polynomial elements. We have for the

contours r 1 and 1 2

17(a)jri = -1H(a)Ir!2 M)1 (8)

where {2 ( 2oE -- -)V2 o_- 2 2)2 2- 42('X - 2 x)2

,y1 (>29)2
m = 29a'(x - ;4)(ke -1 x~ (9)

n -

and

A(a) = •a2(1 -- _X)2 - [yi(ke_ -_ L )- _y2 (k2eL -_ L )]2 (10)

According to the Wiener-Hopf-Hilbert method, we introduce another unknown vector V(a) =

T(a) -L(a) in order to receive a new vector Hilbert problem for V(a). Due to special choice of
T(a), the latter may be separated into two uncoupled standard Hilbert problems [9], whereupon
the vectors V(a) and L(a) are found. These vectors should be regular in the domain IHu +

IIL - Ti - r 2 . Farther, one may construct two vectors L(1' 2 ) (a) (L 1 ,'2 ) (a)) which fulfil thecon iton (1 r(2) - (2) ()- --conditionL 1 (2) -1 2 ( 0. We use them in order to form the matrix QL (a) which also
1 2-1 - -1

should satisfy Eq. (7). The matrices QL(a) and 'U (a) = L(a) Q (a) have not branch
points in I1 L and 1IU, respectively, but temporarily have poles there. The next step is to cancel
the undesirable singularities in these matrices using a properly chosen rational matrix F(a),
namely

------ -- -- 1 •-
QU (a•) = "F(aZ) -"'u (a•), iUL (a) = P(a•)- QL (a) - (11)

To define the elements of P((a) we have to take into account the number of roots of A(a)
located on its branch, which is given via the conditions at infinity. It turns out, that at least
four constants can be chosen arbitrary. The correct definition allows to simplify essentially the
further complicated calculations.

4. Completion and Analysis of the Solution

When the matrix factors "UL (a) are found the solution of Eq. (6) is straightforward. It
is rearranged so that to receive the left- and right-hand sides which are regular in Iu and

HL, respectively, and define an integral function J(a). According to the edge condition, the
asymptotic behaviour of both sides of the equation at jai -+ oo permits to put J(a) = 0. This
makes it possible to find the spectral amplitudes Aj(a), Bj(a) and to complete the solution of
the problem.

It turns out that the integrand of Eq. (3) is quite cumbersome. Yet the related integrals
are suitable for the asymptotic evaluation of far fields by the method of steepest descent. The
singularities of the integrands give rise to the distinct wave species. The pole contributions
are coupled with the geometrical optics field which in the illuminated region y _> 0 consists of
the reflected basic mode and the concominant mode excited due to reflection coupling between
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modes. An additional pole originated from the dispersion relation A(a) = 0 (see Eq. (10))
contributes a surface-wave term. The unidirectional surface wave [6] propagates along a face of
the half-plane. Reversion of the external magnetic field shifts it on the other face. The saddle-
point contributions are interpreted as two congruences of diffracted rays. At last, in principle,
one needs to consider the branch-point contributions that lead to the such manifestation of
modal coupling and total reflection as lateral waves.

5. Conclusion

A problem of plane wave diffraction by a perfectly conducting screen in a homogeneous chiro-
plasma is solved for the case of normal incidence on the edge which is parallel to the external
magnetic field. The formulation leads to the vector Wiener-Hopf equation which is solved by
the Wiener-Hopf-Hilbert method. Because of numerous wave species involved, the problem has
certain versatility. An outline is conducted on the example of both propagating bulk eigenwaves
of the medium. A unidirectional surface wave and lateral waves are the most notable features
of the far field in the diffraction problem under consideration.
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