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Abstract

A brief outline of the mathematical technique of scalar Hertz potentials is provided. It is
shown that the technique can be successfully implemented if all four constitutive dyadics of
a linear bianisotropic medium have a gyrotropic structure. A medium of that nature is a
so—called Faraday chiral medium, and it may even be nonhomogeneous but of a restricted
form.

1. Introduction

Approaches to solve electromagnetic field problems can be roughly divided into two categories:
direct and indirect. While the former deal directly with the Maxwell equations for the electro-
magnetic field vectors, the latter aim to derive, and consequently solve, alternative differential
equations that are fulfilled by certain functions — scalar, vector or dyadic. The field vectors
themselves then follow from these functions through (relatively simple) manipulations such as
differentiations and integrations.

Two of the most prominent indirect solution techniques are (i) Green function methods
and (ii) potential methods. In this contribution we shall focus on potentials, and specifically
on scalar Hertz potentials and their role in the solution of electromagnetic field problems in
complex mediums.

Vector, scalar and Hertz potentials, in their application to (achiral) isotropic mediums, have
been prominent mathematical tools since the early stages of the development of the Maxwellian
formalism — a fact easily betrayed by their inclusion in the vast majority of standard textbooks
on electromagnetic theory. But only in the last two decades has it been possible to extend
the concept of scalar Hertz potentials into the realm of more complex mediums, which may be
anisotropic, bianisotropic, nonhomogeneous, in their nature.

Here, an outline of the scalar Hertz potential method is given, necessarily short due to the
limited available space. Full details including a comprehensive listing of references of the relevant
research literature can be found in a recent book chapter [1].

2. Analysis

The Maxwell equations for a general, linear bianisotropic medium are!
iw [+ BXx) +£ - Hx)| + 7V x Hx) = J.(x), )
V x E(x) —iw [¢ * Bx) +p * HX)| = -In(x). (2)

'Vectors are in bold face whereas dyadics are in normal face and underlined twice. Contraction of indices is
symbolized by a dot and ab is a dyadic product; the unit dyadic is I.
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E(x) and H(x) are the electric and magnetic field vectors, whereas J¢(x) and J,(x) are the
prescribed electric and magnetic current densities (a time-dependence of exp(~—iwt) is implicit).
At this stage no restrictions are imposed on the specific form of the four constitutive dyadics in
1), (2).

To develop a field representation in terms of scalar Hertz potentials, a partial scalarization
of the differential equations (1), (2), is carried out with respect to an arbitrarily chosen direction
specified by a unit vector ¢ — once again, full mathematical details can be found in [1]. The
decompositions

E=E¢+E'cc, H=Ht+HcC, (3)
are introduced, whereby E; * ¢ = 0 and H; * ¢ = 0; E; and H; being called the transverse, E,
and H, the longitudinal components of the field vectors. Similarly, for the electric and magnetic
current density:
Je=Jdet + Jecc, Jm=Jdmt + Jmce, (4)
and also for the derivative operations:

=V 3 2 2 62
V= t+c—5x—c’ \% =Vt+’5z_%1 (5)

wherein V2 is the Laplace operator.
The c—components of (1), (2) provide two scalar expression for the components E, and H,
and one finds, after some algebra,

E.=Pe*E;+PgrH; + K, (6)
H =Ppe *Et+Ppp*Hy + Ky, (7)

where P e, Pen, Pre and Ppp are 2x2 dyadic operators while K, and K}, are source terms.
Now, a system for the transverse components E; and H; is derived in the form

oE; . .
_az:+W.M=ee'Et+w£eh'Ht:qte’ (8)
oH, . .
B 8:0: tiwM, cEitiwM,, «He=qp. (9)

where M, M ..M, and M. are 2x2 dyadic differential operators of second order and qz.
and qq, are 2-vector source terms.
The crucial step is now the introduction of scalar potentials through

Et=Vt¢+VtX @C, (10)
H;=V:II4+V; x Tec. (11)

Straightforward manipulation of (6), (7), then leads to formulas for the longitudinal components
E. and H_, in symbolic form:

EczEc(q)a@aHa\Il;JeCaJmc)a (12)
HC=HC((I>,@,H,\I’;JCC,Jmc). (13)

The expressions (10)-(13) constitute a representation of all field components in terms of the four
scalar functions ®, ©, IT and ¥; substitution into the available differential equations produces a
system of four differential equations for the four scalar potentials. At that stage no direct gain
has been achieved as one has simply exchanged solving a system of partial differential equations
of second order for E; and H; with solving a corresponding system for the four scalar potentials.
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The question is therefore: can two of the four scalar potentials be eliminated in a simple
manner so that the field vectors E and H can be represented in full by two scalar Hertz potentials
plus, perhaps, some auxiliary functions that are required to deal with specific source terms?

The answer to that question is that such an elimination is not possible for the general,
linear bianisotropic medium characterized by ¢, £, ( and p. Conditions on the structure of
these constitutive dyadics must be imposed and the desired reduction is possible only if the
coustitutive dyadics are of the form

a

= otl+ (0c—or)ecc—idogex ]
oy iog O

= —7:0'9 oo 0 ’ g—_—gag_agv
0 0 o, -

(14)

I

All four constitutive dyadics are of gyrotropic form, and a medium of that nature is called
a Faraday chiral medium [2]. In the dyadics (14), o; and o, characterize the uniaxiality of
the medium whereas o, is responsible for the gyrotropic or gyrotropic-like nature. The scalar
Hertz potential formalism for homogeneous Faraday chiral mediums has been outlined in detail
elsewhere [2]. The field representation, for all the types of mediums for which the scalar Hertz
potential technique is then applicable, can symbolically be given by

E=E(ea‘I’;JemueyveaJmcauma'Um)a (15)
H=H(@,\II;Jec,ue,ve,Jmc,um,'vm), (16)
because usually the two potentials that get eliminated are ® and II.

Typically, the two functions ©® and ¥ — the scalar Hertz potentials — fulfil a system of
differential equations of the structure

LiO+ LT =3 , (17)
L3® + Ly¥ = s, (18)

where the exact form of the second order partial differential operators Ly, Ly, L3 and L4 depends
on the specific type of bianisotropic medium being analysed; s; and s, are source terms. In
general, thus, © and ¥ are coupled but decoupling occurs if the medium becomes sufficiently
simple (as happens, for example, for a uniaxial dielectric medium [3]).

Finally, what is the significance of the functions ue, 4, ve and v, that have entered the
field representation (15), (16)? These are auziliary functions defined by

Jet = Viue + Vg X VeC, (19)

Consequently, the four auxiliary functions are calculated from the differential equations
Vfupzvt' Jpt, Vi, =V,;* (exJpt), p=em, (21)

and it is immediately clear from these expressions that they have nothing to do with the medium
as such but are simply generated by the mathematical formalism to accommodate transverse
current densities.

3. Discussion

The brief outline of the scalar Hertz potential technique is concluded here with a number of
observations; see [1] for more detailed discussions of the individual points.
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e Not mentioned previously is the possible generalization to nonhomogeneous mediums,
where the nonhomogeneity is of a restricted kind. Namely, all constitutive parameters
can depend on z.(= x * c), the coordinate parallel to the distinguished axis c. Thus, the
most general type of medium that is amenable to the scalar Hertz potential technique is
characterized by constitutive dyadics of the form

€(ze) = €x(e) L+ [eclze) — exloe) [ec —ieglac) e x L, (22)
E(e) = &(ze) L+ [€(e) — Ealae) e — ig(@c) e x L, (23)
((ze) = Gilme) L+ [Gelme) — Gile) e — iG(ac) e x L, (24)
p(ze) = pelwe) L+ [ polme) — palwe) |e e ~ ipgla) e x L. (25)

All constitutive dyadics have a gyrotropic structure and are spatially nonhomogeneous
through the dependence on z. and are thus nonhomogeneous Faraday chiral mediums [2].

e The auxiliary functions g, Um, ve and vy, are determined by (19)-(21); it is noted that

Jet=0 => 'U.e=0, 'Ue=0, (26)
Jau=0 = u, =0, v, =0. (27

Consequently, they can be completely omitted from the mathematical formalism if the
medium is free of sources, i.e., J¢ = 0, J,, = 0, or if the current densities are purely
longitudinal, i.e., J¢ = Jec€y J i = Jpcc.

e With the fundamental system of differential equations (that for the scalar Hertz potentials)
that needs to be solved being a scalar problem, Green functions that may be introduced
subsequently can be of the simpler scalar rather than much more complicated dyadic
nature.

o The introduction of the scalar Hertz potentials is not a unique process. New scalar Hertz
potentials ©O™¢¥(x) and ¥™*¥(x) may be defined via

O™ (x) =1 O(x) + 12 ¥(x),  I"™(x) =3 O(x) + 71 ¥(x), (28)
where v,, n = 1,2, 3,4, are arbitrary complex constants (provided v1v4 # 7y2v3)-

In conclusion, the scalar Hertz potential technique provides a very successful mathematical
method to deal with electromagnetic field problems in complex mediums.
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