TITLE: Improve Product Aperture Ratio by Controlling Magnitude of Reverse Tilt Domain

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:
TITLE: Display Technologies III Held in Taipei, Taiwan on 26-27 July 2000

To order the complete compilation report, use: ADA398270

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP011297 thru ADP011332
Improve product aperture ratio by controlling magnitude of reverse tilt domain

W.H. Ho, C.J. Pan, H.H. Wu**
Prime View International Co., Ltd., HsinChu, Taiwan, R.O.C.

ABSTRACT
In thin-film-transistor LCD, aperture ratio is an important parameter of transmittance. In this paper, we describe the relation between aperture ratio and reverse tilt domain. We conclude that we can control the magnitude of reverse tilt domain by changing rubbing density, pile impression, cell gap and altitude of TFT. Consequently, relatively large aperture ratio could be obtained by decreasing the area of black matrix.

PREFACE
In TFT-LCD, tilt direction of liquid molecule is opposite between reverse tilt domain and tilt domain. Consequently, the light leakage is observed at this boundary, especially in black picture. Furthermore, shade and contrast of reverse tilt domain are different to normally domain. In order to improve contrast and quality of picture, black matrix of color filter is used to cover reverse tilt domain. Aperture ratio depends on the area of black matrix, so we must reduce this area. The mechanism of reverse tilt domain is that voltage difference between pixel electrode and neighbor electrode change corner of liquid molecule tilt direction. Its position depends on rubbing direction, design of circuit and position of TFT. And its magnitude depends on cell gap, rubbing density, pile impression, and so on. Figure 1 shows the relation between electric field distribution and occurrence of reverse tilt domain. According to this relation, we can increase pre-tilt angle to restrain reverse tilt domain, or decrease influence of voltage difference between pixel electrode and neighbor electrode.

EXPERIMENT
To focus on 6.4” PVI product, we experimented with different conditions to measure reverse tilt domain, as follows:
- First, to change roller revolution and moving velocity of rubbing machine to get different rubbing density.
- Second, to change clearance between roller and stage of rubbing machine to get different pile impression.
- Third, to change density of spacer and end sealing pressure to get different cell gap.
- Fourth, to change array process to get different altitude of TFT.
- Fifth, to change rubbing direction.

The above-mentioned conditions are shown in Table 1.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubbing density</td>
<td>50, 100, 150</td>
</tr>
<tr>
<td>Pile impression</td>
<td>0.25, 0.35, 0.45mm</td>
</tr>
<tr>
<td>Spacer density</td>
<td>60, 100 piece/mm²</td>
</tr>
<tr>
<td>End Sealing Pressure</td>
<td>0.5, 0.7 kgf/cm²</td>
</tr>
<tr>
<td>Cell gap</td>
<td>4.8 ~ 5.8 μm</td>
</tr>
<tr>
<td>Passivation layer</td>
<td>2000, 6000 Å</td>
</tr>
<tr>
<td>Conduction layer</td>
<td>2000, 6000 Å</td>
</tr>
<tr>
<td>Rubbing direction</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. The mechanism of reverse tilt domain
RESULTS

Disclination line of 6.4", 1.8", 6.4"VGA production are shown in figure 2.

Pile impression
To decrease pile impression to increase pre-tilt angle, reverse tilt domain would be restrained effectively. The relation is shown in figure 3.

Rubbing density
Figure 4 shows the relation of rubbing density an reverse tilt domain. We find no regular relation among of them. The reason is that rubbing density changes pre-tilt angle lightly (about 0.8°), when rubbing density is from 100 to 200.

Cell gap
Figure 5 shows that cell gap decreasing would restrain reverse tilt domain. When cell gap decrease, electric filed intensity \(E_c \) and electric force \(F_c \) would increase, and reverse tilt domain would decrease.

Altitude of TFT
Altitude of TFT decrease, alignment would be improved at corner and reverse tilt domain would decrease.

Rubbing direction
Figure 6 shows that position of reverse tilt domain depends on direction of rubbing.

Spacer
Figure 7 shows that spacer would effect reverse tilt domain clearly, especially small size pixel.

Different Pixel Size
Table 2 shows that reverse tilt domain do not depend on pixel size, it is decided by driving signal and circuit layout.
Figure 3. The relation of pile impression and disclination

Figure 4. The relation of rubbing density and disclination

Figure 5. The relation of cell gap and disclination

Figure 6. Disclination appears opposite direction after changing rubbing direction

Figure 7. Effect of spacer

Table 2. Disclination of different pixel size

<table>
<thead>
<tr>
<th>Size</th>
<th>Disclination - c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8"</td>
<td>7.05</td>
</tr>
<tr>
<td>6.4"</td>
<td>7.2</td>
</tr>
<tr>
<td>6.4"VGA</td>
<td>7.94</td>
</tr>
</tbody>
</table>
DISCUSSION
We conclude that we can change the magnitude of reverse tilt domain, and that if we according to actual range of reverse tilt domain to re-design black matrix of color filter in present products, we can increase 4–5% aperture ratio to improve transmittance.

REFERENCE
2. N. Takahashi, Y. Hirai, S. Kaneko., SID'93 Digest, pp. 610-613