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Abstract

The morphology diagram of possible structures in two-dimensional diffusional growth is given in the parameter space of
undercooling A versus anisotropy of surface tension E. The building block of the dendritic structure is a dendrite with a
parabolic tip, and the basic element of the seaweed structure is a doublon. The transition between these structures shows a
jump in the growth velocity. We show the analogy of diffusional growth with dewetting patterns of a fluid film on a
substrate. We also describe the structures and velocities of fractal dendrites and doublons destroyed by noise. The extension
of these results to three-dimensional growth is briefly discussed. © 2000 Elsevier Science BY. All rights reserved.

1. Introduction

During the last few years, our understanding of
pattern formation in various non-linear dissipative
systems has made remarkable progress. Building on
these foundations, it has now become possible to
develop a description of a large class of patterns that
are found in diffusional growth. This leads to the

tions concerning the transitions between the different '0,.,,,

structures [1,2]. ... "
To introduce the topic, let us take a look at a few I Q .. .

interesting patterns appearing in nature and experi- ,
ments. Fig. 1 displays one of the most popular ,."

examples which has become a paradigm of the field:
the snowflake. It also happens to be the first case of ,
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0167-2738/00/$ - see front matter © 2000 Elsevier Science BV All rights reserved.
PII: S0167-2738(00)00619-6



24 E. Brener et al. / Solid State Ionics 131 (2000) 23-33

spontaneous pattern formation in nature that has been Clearly, it will be much easier to understand the
treated scientifically (rather than as a theological essential mechanisms by analysing experiments
topic) in a publication. In his article on 'The Six- which are simple to prepare and still produce den-
Cornered Snowflake' [4], Kepler speculated that the drites. Some most careful and beautiful experiments
six-fold symmetry of snowflakes has to do with of this kind have been done in the group of Glicks-
something we would call the crystal structure today. man [5-8]. They consist of chemically pure suc-
He also arrived at the conclusion that a detailed cinonitrile [CzH 4 (CN)1], which is an important
understanding of snowflakes was beyond his reach. model substance because, being transparent, it can be
Just how judicious this modest statement was, may easily observed during solidification, while its solidi-
be gathered from the fact that even 10 years ago, fication properties are similar to those of (technologi-
more than 350 years after Kepler, the basic mecha- cally important) metals. The solid phase grows into
nism by which the characteristic length scales of an undercooled melt. There are no facets on the

snowflake patterns arise was not known. crystal, its surface is rough. This means that the
Snowflakes are ice crystals growing from a critical attachment kinetics of molecules at the interface are

nucleus in an environment of supercooled vapor. The very fast - the free energy for the formation of a
condensation process clearly is a first-order phase step on the interface is zero, there is no nucleation
transition. Contrary to second-order transitions, first- barrier. Thus kinetics are not a limiting factor in the
order ones give rise to a sharp interface between the growth process. Growth is controlled by how fast
two phases. It is the dynamics of this interface that latent heat produced in the solidification process can
are of interest here. be transported away via diffusion. (In the case of the

Snowflakes are flat objects of approximate but not snowflake, this is not true for the third dimension;
exact hexagonal symmetry. Their six main arms have growth in that direction is faceted, keeping the flake
a characteristic structure: they emit sidebranches at essentially two-dimensional.)
crystallographic angles. When these structures were The main result of these experiments to be kept in
given names, classical education was still prevailing, mind is that, given the undercooling, the dendrite has
so they were called dendrites, after the greek '7-6 both a uniquely selected tip radius and constant
59vpov,', meaning 'the tree'. velocity.

No two snowflakes are alike. Therefore, their Completely different structures are commonly
shape must be extremely sensitive to the environ- formed by minerals crystallizing from viscous mag-
mental changes brought about by their turbulent mas or by certain polymers solidifying from the melt
motion within the cloud. On the other hand, the six [9], so-called spherulites. Contrary to dendrites,
arms are very similar to each other. Hence, on the spherulites are polycrystalline. They have approxi-
length scale of the size of a snowflake (1 cm), its mately radial symmetry and their substructures are
environment must be spatially homogeneous. not oriented along crystallographic directions.

The question then arises why such a complex Their radius grows proportional with time, which
morphology evolves in a uniform environment - means they have a stationary growth phase. Again,
why not simply spheres? Or, if the crystalline one would like to be able to make predictions about
anisotropy plays a role, why not just hexagonal selected length scales.
plates (according to the crystal system of ice)? It was proposed by Goldenfeld [9] that spherulites

Another question that we may naturally ask is: are three-dimensional examples for a growth struc-
how does the snowflake select its typical length ture which was then called 'dense branching mor-
scales, e.g. the tip radius of its main arms, the width phology' and will be described shortly. Experimen-
and spacing of the sidebranches? tally, densely branching patterns were first obtained

The growth dynamics of true snowflakes are in a non-crystalline system; this was the viscous
complicated by several circumstances - there is a fingering experiment in a circular Hele-Shaw cell
large density difference between the solid and the [10]. An inviscid fluid is injected into a viscous one,
vapor; besides the vapor there is a second agent for displacing it and forming branchy structures in the
heat transport, namely air; furthermore, the temporal process. It is still controversial [11,12] whether in
fluctuations of the environment of a flake are strong. such a system, governed by the Laplace instead of
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the diffusion equation, the dense branching morphol- Ujint = A - d(O)K (3)
ogy can persist at large length scales.Thyc pere s are welarl- wngrth modlels, mosThe indices 'L' and 'S' refer to the liquid and solid,There are well-known growth m odels, m ost no- r s etvl .T e s eii et
tably diffusion-limited aggregation (DLA), that lead respectively. The specific heat, C and the thermal

to the formation of fractal patterns [13]. diffusion constant D are considered to be the same in

Since DLA is a Laplacian system, it is natural to both phases, L is the latent heat; U = (T - TcPIL

ask whether fractal structures are to be expected in is the appropriately rescaled temperature field mea-

diffusional growth, too. sured from the imposed temperature T. of the

An obvious classification of growth structures undercooled melt far away from the interface; in

would then be to distinguish between compact and terms of these parameters,

fractal patterns [1,2]. By compact growth we mean A =(T, - T.) cp/L (4)
growth at a constant (average) density, irrespective of
the value of this density. As we shall see later, fractal is the dimensionless undercooling of the melt and TM

patterns in crystal growth are fractal only up to a is the melting temperature.
certain size and compact beyond. The physics underlying Eqs. (1)-(3) is quite

What we are aiming at is to formulate a theory simple. A solidifying front releases latent heat which
that relates the diverse discussed patterns in some diffuses away as expressed by (1); requiring heat
kind of kinetic phase diagram. The 'kinetic' used conservation at the interface gives (2) (W is the
here reminds us that we are not dealing with phase normal to the interface). Eq. (3) is the local equilib-
transitions (which would imply thermodynamic rium condition at the interface which takes into
equilibrium), but dynamic states manifesting them- account the Gibbs-Thomson correction; K is the
selves in typical growth patterns. In the literature, the two-dimensional curvature and d(O) is the so-called
term morphology diagram is widely used [14]. anisotropic capillary length with an assumed four-

On the one hand, such a diagram indicates which fold symmetry,
patterns are selected for which system parameters. Its d(O) = d0(1 - E cos 40) (5)
existence signifies, in particular, that there is a
certain degree of independence of the observed Here do = YTMCP IL 2 is a capillary length propor-
morphologies of initial conditions. On the other tional to the isotropic part of the surface energy y; 0
hand, given the existence of such a diagram, one is the angle between the normal Wf to the interface
may try to exploit the analogy with a further phase and some fixed crystallographic direction, at which
diagram and ask questions about the nature of d(O) is minimal; e is the strength of the anisotropy.
transitions between the different morphologies. In Eq. (3) we neglect the kinetic effects, that is the

dependence of the interface temperature on the
growth velocity v,, which holds at the sufficiently

2. Formulation of the problem small undercoolings and velocities.
Our main interest here is concerned with patterns

We are interested in a non-equilibrium situation - which can grow at constant speed even at low

growth of a stable phase from a metastable one. To undercoolings A < 1, because if they exist they will

be specific, we consider the two-dimensional growth dominate the systems behavior. A two-phase struc-

of a pure substance from its undercooled melt, where ture then must exist behind the growth front filling

the growth is controlled by the diffusion of the latent the space uniformly on sufficiently large scales. The

heat of freezing. It obeys the diffusion equation and fraction 7 of solid inside this two-phase region

appropriate boundary conditions at the moving (not should be equal to A due to global conservation,
known in advance) interface q = A (6)

U 2 One may define an envelope over the front of this
a-DVt U (1) complex two-phase structure, calling this suitably

averaged envelope the average front in contrast to
v,,= Di'(VUsIint --VULIi.t) (2) the local interface separating the solid from the
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liquid. This average front can be considered as the nate between compact structures (C) and fractal
real growth front in the sense that a two-phase structures (F). A complementary classification deals
mixture, solid plus liquid, grows into a one-phase with the existence of orientational order. A structure
region originally consisting of liquid only. These with pronounced orientational order will be called
two-phase structures are developed from initially dendritic (D), and without apparent orientational
smooth interfaces by the well-known Mullins- order it will be called seaweed (S).
Sekerka instability [15]. It turns out that noise which always exists in the

Eqs. (1)-(5) contain two-dimensional parameters, system (for example the thermodynamic noise) ap-
do and D, and two dimensionless parameters, A and pears to play a crucial role in the formation of fractal
e. It means that any characteristic length scale, f, structures but is not so important for compact
and growth velocity, v, of the possible structures can patterns.
be presented in the form

D
S= dof(A, E), V = T (o(A, E) (7) 3. Compact dendrites (CD)

Our aim is to predict, for given undercooling A and Dendrites can grow at arbitrary small undercooling
anisotropy e, the type of the two-phase structure, and 4, but usually a non-zero value of the anisotropy E is
its characteristic length scales and velocity, that is to required. The growth pattern evolving from a nu-
calculate the functionsf and ýo in the relation (7). As cleus acquires a star-shaped envelope surrounding a
it turns out these functions have scaling forms for well-defined backbone. The distances between the
small A and e, thus showing power law dependencies comers of the envelope increase with time. For small
on A and e. undercooling we can use the scaling relation for the

We construct the kinetic phase diagram in the motion of the comers as for free dendrites [16-19]
plane (4, e) (Fig. 2), which represents the regions of with tip radius p, and velocity v. These two relations
existence of different structures and the lines of come from the Ivantsov formula [20]
transitions between the structures [1,2]. We discrimi- (8)

2D

and from the selection condition for the stability
parameter o-,

1 PA -7/8
CS - oD/,(9)

It is quite remarkable that Eq. (8) was obtained in
1947 but it took about 40 years to derive the very

. . non-trivial relation (9). One can find the details in
[16-19]. From Eqs. (8) and (9) follow the dependen-

F. D / cies of pt and v on the parameters 4 and e:FDS

/S, CD pt,- do E -74 -2 V _ a / (10)

S/ Eq. (10) really describes a needle-crystal which,
* / without noise, has no sidebranches. The corre-

sponding star structure then cannot fill the space with
constant density and the amount of material

0 solidified in parabolic form increases with time only
F_ according to t31 2 rather than t2 for a truly compact

Fig. 2. Kinetic phase diagram. object in two dimensions.
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A small amount of noise, however, cures this as a morphological 'phase' distinct from the well-
problem. The tip of the dendrite is still stable against known dendritic morphologies was rather specula-
small noise but has a 'convective' instability which tive. Computer simulations also were inconclusive at
produces sidebranches. Those branches continue to that time.
grow until they become independent primary branch- The first indication for the existence of such a
es a distance t = D/v away from the comers of the distinct phase came (to our knowledge) from argu-
star. The global shape then consists of an envelope ments [1,2] based on a theoretical study of crystal
of diamond type over the dendrite tips which appear growth in a channel [26]. This analysis of channel
a distance D/v apart from each other. The velocity growth gave, among other things, the following
scales like Eq. (10). The relative space filling by results. A finger type pattern symmetrically in the
primary dendrites and sidebranches of course must center of the channel could grow at a constant
be equal to A. The two basic length scales in this growth rate for dimensionless supercoolings A > 0.5.
pattern accordingly are the diffusion length D/v and The finger looks similar to the Saffmann-Taylor
the tip radius pt of a typical dendrite, finger of viscous flow, but belongs to a different

For small undercooling A those two length scales branch of the mathematical solution. The growth rate
are well separated, pt << D/v. While the dendritic of the crystal increases with increasing driving force
structure becomes compact only at length scales A, as expected. A specifically remarkable result of
larger than D/v, it shows fractal behavior at the this theory [26] is that the driving force sets a length
intermediate length scale -e, p, < e < Dlv, with scale and thereby also a velocity: For a given driving
fractal dimension Df = 1.5 [24]. In this fractal object force 0.5 < A < 1 there exists a characteristic chan-
the sidebranches interact due to the competition in nel width below which such a steadily growing
the common diffusion field. Some of the sidebran- finger is no longer possible.
ches die and some continue to grow in the direction However, it has been discovered recently that the
prescribed by the anisotropy. This competition leads spectrum of solutions for growth in a channel is
to coarsening of the structure in such a way that the much richer than had previously been assumed.
distance between the surviving sidebranches is ad- Parity-broken solutions were found [27] and studied
justed to be of the same order of magnitude as the numerically in detail [28-30]. A similar solution
length of the sidebranches and is proportional to the exists also in an infinite space which was called
distance from the dendritic tip. At the same time, the 'doublon' for obvious reasons [28,29]. It consists of
thickness of the surviving sidebranches is propor- two fingers with a liquid channel along the axis of
tional to the square root of the product of pt and the the symmetry between them. It has a parabolic
distance from the tip. On length scales larger than envelope with radius pt and a liquid channel of
D/v the dendritic structure appears to be compact thickness h. The Peclet number, P = vptl2D depends
with mean density q = A. on A according to the Ivantsov relation (8). The

analytical solution of the selection problem for
doublons [31] shows that this solution for isotropic

4. Compact seaweed (CS) systems (E = 0) exists even at arbitrary small under-
cooling A and obeys the following selection con-

CD structures formally exist at arbitrary small ditions:
anisotropy e but their velocity goes to zero as E --> 0.
It was recently discovered that there is another 1 pI (11)

structure, compact seaweed (CS), which is favorable h ~Pt 7 -= doD/v
for smaller e and larger A. The velocity of the
structure remains finite at E = 0.

The compact-seaweed morphology [1,2] was
originally introduced on the basis of experimental D
observations under the name dense branching mor- Dh do (12)
phology [25]. At that time, however, its introduction do
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If one includes finite anisotropy e, doublon solutions the CD-structure. The resulting two-phase structure
exist only above the solid line on Fig. 2, for which has an almost isotropic circular envelope which

moves with approximately the same velocity [Eq.
A-F]/4 (13) (12)] as a free doublon. The structure is fractal with

D. = 1.5 in the intermediate length scale between p,
For e smaller than that given by (13) the doublons and D/v, and it becomes compact with mean density
obey the same scaling law as given by Eq. (12) [31]. q = z for the length scale larger than D/v. The

It should be noted that doublons in the range of region above the solid line, A- e_11 4 (Fig. 2), corre-
their existence (13), grow faster than dendrites for sponds to CS-structure where doublons exist and
the same parameters A and e. This statement is grow faster than dendrites. This line represents the
confirmed by numerical calculations [28,29]. discontinuous transitions between CD and CS-struc-

The numerical calculations also show that the tures with a jump of velocities.
double-fingering structure is stable against competi-
tion between the two fingers which belong to the
doublon. It means that the axis of symmetry and the 5. Surface dewetting as a diffusional growth
direction of growth are stable. Of course these process
directions are arbitrary in isotropic systems. It is not
completely clear at the moment if the stability of the As an application of this theory the effective
free doublon pair follows precisely the scaling law equations of motion for a drying thin film wetting a
Eq. (13). In any case this line represents a lower substrate are derived. These equations are equivalent
bound on A for a given E. to the one-sided model of diffusional growth with an

We assume that the doublons seem to represent a effective diffusion coefficient which depends on the
key point in the growth of compact-seaweed mor- viscosity and on the thermodynamic properties of the
phology (Fig. 3). The formation of a full CS-struc- thin film.
ture evolving from a growing nucleus is possible According to the description given in [33], and
only due to noise, which triggers sidebranches, as in also by Sharma [34,35] and de Gennes [36], there is

a possibility for the almost dry part of the solid
substrate to be in equilibrium with the wet part
which is in fact a thin (but macroscopic) film of a
liquid. Both parts (dry and wet) on the solid substrate
are separated by an interface, which can be described
by a height variable h(x) with x being the coordinate
across the interface from the dry to the wet part.
Towards the dry part, the height variable goes to a
very small value h-, towards the wet part the film
thickness goes to an equilibrium value h,(p) for
given pressure p in coexistence with the vapor phase.
At a specific pressure P& the liquid film can be also
in equilibrium with the (almost) dry surface, the
corresponding thickness of this wet film then is
defined as h0 = h_,(po). For lower vapor pressure,
the equilibrium film thickness h,(p) would decrease
to a value smaller than ho, but it would be metastable
only and the the stable dry area would expand at the
cost of the wet area. This is the dewetting phenom-
enon under consideration. Patterns similar to Fig. 3
have been recently observed experimentally [37].

Fig. 3. Seaweed structure. We assume a surface-tension y exists between the
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liquid and the vapor. The free energy of the film then motion studied in [41], generalizing our basic model
can be written as (Eq. (1)).

Of course, this approximation holds only inside

G -={g(h(x, y)) + 2 IVhI2} dx dy (14) the wet region, not directly at the dry-wet interface.
2 This interface region gives rise to a profile h(x)

In equilibrium a double-tangent construction to g(h) similar to a tanh function. The development of the

gives two solutions of h- for the dry part and of tanh profile from the dry to the wet part occurs over

ho(p) for the wet part of the surface. This leads to a distance that is short compared to the typical

the evolution equation [34,35,37] for the film vari- patterns being observed in the dewetting process. We

able h(x,y;t): can therefore replace this profile by a sharp interface
between the dry and the wet part, but must add the

ah h h3 • dg(h) _ Ycorresponding boundary conditions to the equation of
-- =v.-v L yV~h motion (16) for the wet side. Obviously, the bound-

at 3-q dh ary conditions consist of a conservation law Eq. (2)
[ dg(h) yV2 h - Ix(p) (15) which guarantees that a displacement of the dry-wet

dhJ interface must locally conserve the fluid. Under
dewetting conditions this leads to a swelling of fluid

Note that a relaxational term proportional to a has u > 0 at the interface. The second condition clearly
been added. This term alone guarantees that a comes from the surface tension y which tends to
homogeneous liquid film will relax to its equilibrium keep the dry-wet interface straight. This is then just
value by evaporation or condensation. it(p) is the the usual Gibbs-Thomson condition for an interface,
chemical potential of the vapor. For h = h.(p) this as described in Eqs. (3) and (4) above, with the
term vanishes. capillary length being approximately d, - y/

The first part of Eq. (15), proportional to the ({d 2g(h)/dh2}[a) where ( is the thickness of the
inverse viscosity 7-q1 of the liquid film, describes a dry-wet interface, and the dimensionless driving
creeping motion of a thin film flow on the surface. In force is A = (h0 - h.)/ho. In summary, we have for
the (almost) dry area the contributions of both terms this viscous fluid-flow problem of surface dewetting
to the total flow and evaporation of material can be exactly the same equations as for the diffusional
basically neglected, because of the small value of growth of an isotropic solid.
h-, typically less than one monolayer of adsorbed
fluid. Inside the wet area we can to the lowest order
linearize h = h_ [1 + u(x, y)], where u is now a small 6. Fractal structures
deviation from the asymptotic equilibrium value for
h_(p) in the liquid. Since Vh-(p) 0 the only For the compact structures described above noise

surviving terms are linear in u and its spatial is important only as the trigger of sidebranches. It
derivatives Vu and Au. Therefore, inside the wet area, has been assumed that the tips (of dendrites or

the evolution equation for the variable part u of the doublons) remain undestroyed. However, the

height variable h becomes strength of noise may be large enough not only to
trigger the sidebranches but also to destroy the tips.

au In order to estimate the parameters for which it
at=DefAU- Aeffu (16) happens let us look at the theory of sidebranch

formation more carefully. According to the result of
We have dropped here the terms - yA2u since the Langer [32] the root mean square amplitude, (ýý2)1/2

effective diffusion constant Deff =(h3o/3'7){d 2g/ of the sidebranches on the underlying parabolic
dh2} + ay is positive and dominates the long-wave- interface generated by thermal fluctuations depends
length behaviour over the fourth-order term. The on the distance from the tip z according to
relaxation coefficient is Aeff = a{d2g/dh2}. Deriva-
tives are taken around the equilibrium value h = h,. F exp Z 1/4(17)Note that (16) now is precisely the equation of At I Z-3 -A•f(7
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Here the stability parameter o- is given by Eqs. (9) lins-Sekerka instability. At that time, however, the
and (11) for dendrites and doublons, respectively; F existence of doublons was not known.
is the relative noise strength (F << 1) A new approach, therefore, is required for the

1/23 1/2 description of the fractal patterns with the destroyed
/ =d(TIT (LWdo'\ (18 tips. Such destroyed fractal structures have been
F\0  J / 0 \ kBCp) already investigated in the framework of Saffmann-

Taylor viscous fingering and diffusion-limited aggre-
where kB is the Boltzmann constant. The tip be- gation [21-23]. The important result of these in-
comes destroyed if the amplitude of the sidebranches vestigations is that there exists an effective envelope
is of the order of p, at the distance z -p, down the obtained by averaging over the structures, which has
shaft. Thus we obtain from Eq. (14) the following precisely the same shape as an ideal stable solution
condition - the shape of the Saffmann-Taylor finger in

I isotropic systems and parabolic shape in anisotropic
,, ln F (19) systems. The density inside this effective envelope is

ý < 1. The envelope has a characteristic tip radius
The tips of the structures will be destroyed if the ,. Because the underlying structure is fractal with
stability parameter o- becomes smaller than the fractal dimension D,. 1.71 in the intermediate
critical value oa* given by Eq. (16). Using the value length scale between small-length cutoff a, and /,,
0'- e-7/ 4 [Eq. (9)], one obtains from Eq. (16) a line the density i inside the envelope can be obtained
of smooth transition from CD to FD-structures in from the definition of the fractal dimension (apart
Fig. 2: from a constant prefactor)

e* -ln FII-8/ 7  (20)r1"

The analogous line which separates CS and FS-

structures in Fig. 2 can be obtained using Eqs. (8),
(11) and (16): which gives more explicitly

J* - Iln F1 21 (21) *(iS,) - \- 2 D, (24)

Eq. (16) has the following physical meaning. Let us Following these results, we will now try to define an
rewrite this relation, using the definition of o- = doDI averaged or coarse-grained structure over such a
(vp) [Eq. (9)], which gives the following condition noisy fractal pattern and to formulate an equation of

motion for this coarse-grained structure using scaling

Pt PMs lIn F1 (22) arguments. More explicitly we try to estimate the
characteristic length scale of the structure and its

where PMs -d 1 D/v is the Mullins-Sekerka length growth velocity by considering the steady-state
describing the instability of a planar interface. One motion of an effective parabolic envelope which

can think of the right-hand side of (19) as the replaces the destroyed dendrite or doublon. The
characteristic length scale, a,,, of the instability due density of the solid phase inside the envelope with
to noise tip radius fi, is given by Eq. (21), where the small

size cutoff ar is defined by Eq. (20)
ar = PMS I1n FI-d In Fn (23)

The tip is stable if p, < a, and it becomes destroyed •(5) ( d (25)
if pt > a,. The same small-size cutoff a, depending
on noise F was introduced in our previous paper The temperature inside the envelope is assumed to be
[1,2] based on the consideration of the self-similar close to the melting temperature. Because the density
development of perturbations induced by the Mul- i inside the envelope is smaller than 1, we have to
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replace the latent heat L by IL. It changes A in Eq. The noise strength F << 1 because the capillary
(4) to (A/i) and modifies the Ivantsov relation to length do is much smaller the diffusion length D/v.

v,3 -/ 4\2

--- i-i (26)2D - 7. Conclusion

The crucial point of the analysis is a modification of
the selection conditions (9) and (11). The ex-
perimental and numerical results [21-23] (the exist- diffusion-controlled growth. The given description

ence of a selected envelope) support the idea that refers to solidification of a pure undercooled melt but

those selection conditions do exist. Unfortunately, it also can be applied to growth of a pure solid from

we do not know any results which allow us to write solution or isothermal solidification of a binary melt.

down these modifications explicitly. But, using sca- More generally one may speak of systems with a

ling arguments, we can write the selection conditions conserved quantity growing by diffusion. The main

in the following scaling form with scaling exponent control parameters of the process are dimensional

/3 which for the moment is undetermined but will be undercooling A and the strength of the surface

specified later. For dendrites we can write tension anisotropy E. It turns out that the noise is also
very important for the structure formation and we

1 e -7/8 -- (27) characterize it by the dimensionless quantity F.
,/V - VdoD/v The resulting morphology diagram (Fig. 2) with

axes A vs. e classifies different kinds of structures
and for doublons and transitions between them.

1 A 5/The dendritic structure has pronounced orienta-

P- p-dD4 - (28) tional order and it is favorable for small A and
- relatively large e. The seaweed structure does not

These relations (24) and (25) transform into Eqs. (9) require anisotropy and is favored for larger A and
and (11), respectively, for , - 1. smaller e. The transition between these two struc-

The selection relations (24) and (25) may be tures takes place around the solid line on Fig. 2 [Eq.
interpreted as the conditions of selection due to an (13)] which is continued by the dotted line into the
effective surface tension. We have chosen the same /3 fractal region. This transition is discontinuous with a
in both Eqs. (24) and (25) because in some sense the jump of velocities since the doublons move faster
factor 77 can be seen as a renormalization factor than the dendrites as soon as they exist. The main
for the capillary length do -> do / 2/. To make an element of the dendritic structure is a dendrite with a
estimate of possible values of /3 it is natural to parabolic tip, and the main element of the seaweed
assume that a coarse-grained surface energy should structure is a doublon (Fig. 3). For compact dendritic
decrease with decreasing 4, giving /3 < 1/2 as a and compact seaweed structures the tips of dendrites
reasonable restriction. We have shown [1,2] that the and doublons are stable against the noise which is
scaling exponent/3 can be expressed in terms of bulk relatively small in these regions. The noise triggers
Df and surface D, fractal dimensions: sidebranches which fill the space and make the

structures compact so that the mean density of the

S= 2 2 -Df (29) solid phase is 77 = A on the length scale larger than
D/v. In the intermediate region of lengths between

All the characteristics of fractal structures depend on the tip radius p, and diffusion length D/v the
the noise strength F. We can estimate F in the fractal structure can be described as a fractal but with a
region using Eq. (15) and replacing p, by the noise- trivial fractal dimension Df = 3/2 which comes from
induced length scale ar from Eq. (20). It gives the parabolic shape of the dendrite.

The region of fractal dendritic and fractal seaweed
) ( /) (30) structures near the origin of the morphology diagram

F In c2  
0 nto(L)30) is characterized by noise being sufficiently large to
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destroy even the tips of dendrites and doublons. It dendritic structures this seems to be perfectly permis-
means that the noise-induced length scale ar [Eq. sible since the basic growth laws are rather similar in
(20)] is smaller than A,. In the range between a,. and two and three dimensions [38,39]:
At the structures are fractal with a non-trivial fractal
dimension D, (D1 - 1.71). This is the reason why we DE714 D 7/4

called these structures 'fractal'. Furthermore, these do d In Ai/z, v --- e (A/In A)
2  (31)

patterns are also fractal in the range between Afi and
D/v but again with the trivial fractal dimension (compare to Eq. (10) for 2-D). There is, however, the
Df = 3/2. Finally they become compact on length crucial difference between the 3-D and the 2-D case.
scales larger than the diffusion length D/v just as In the later, small anisotropy implies that the shape
compact dendritic and compact seaweed structures. of the selected needle crystal is close to the Ivantsov
Note that if one performed a measurement of the parabola everywhere; in the former, strong devia-
fractal dimension on length scales around the cross- tions from the Ivantsov paraboloid appear for any
over length A, one would observe an interpolation anisotropy. This shape, in units of the tip radius of
between our two different values of Df, the precise curvature, depends mostly on the crystalline symme-
result depending on the interval chosen for the try and it is almost independent of the material and
measurement. Since both the dendritic and the growth parameters. The shape of the 3-D dendrite,
seaweed patterns maintain their basic identities in- which has been described analytically [39], together
side the noisy region the transitions from the com- with sidebranching activity [24] is presented in Fig.
pact to the fractal regions represent rather smooth 4. For the seaweed patterns much less is known since
changes in length scales. our preliminary results are mostly numerical ones

We have described the structures and growth [40] (Fig. 5). The crucial point here is that this
velocities of the destroyed fractal dendrites and self-organized triplet structure is not imposed by the
doublons by introducing renormalized quantities for symmetry of the calculation box and it consists of
capillary length and density. We have quantitatively three cooperating symmetry-broken fingertips. A
introduced an effective parabolic envelope following hexagonal or triplet structure should be expected to
the results of [22-24]. The most non-trivial part of occur under free growth conditions from the basic
our analysis is a modification of the selection symmetry considerations, since these growth prob-
conditions [Eqs. (24) and (25)]. At this point we lems do not have reflection symmetry about some
have used scaling arguments which leave us only
with one undetermined scaling exponent /3. This
exponent subsequently is determined by the fractal
dimensions Ds for the surface and D, for the bulk of
the growing pattern. The closed set of equations for
the growth rate and the tip radius are Eqs. (22)-(24)
for fractal dendritic growth, and Eqs. (22), (23) and
(25) for fractal doublon growth. The two-dimension-
al theory together with a small modification [41] in
addition explains the patterns observed on a solid
surface which was covered by a thin wetting layer of
fluid. When a dry spot nucleates in this layer
dewetting occurs through the propagation of the
essentially one-dimensional separation line between
the wet and the dry parts of the surface. Doublon
structures then can be clearly observed.

The scaling arguments given here for two-dimen-
sional growth patterns formally can be extended in a
straightforward fashion to three dimensions. For Fig. 4. 3-D dendrite.
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